14 research outputs found

    Moving out but keeping in touch : contacts between endoplasmic reticulum and lipid droplets

    Get PDF
    The formation of neutral lipid filled and phospholipid monolayer engulfed lipid droplets (LDs) from the bilayer of the endoplasmic reticulum (ER) is an active area of investigation. This process harnesses the biophysical properties of the lipids involved and necessitates cooperation of protein machineries in both organelle membranes. Increasing evidence suggests that once formed, LDs keep close contact to the mother organelle and that this may be achieved via several, morphologically distinct and potentially functionally specialized connections. These may help LDs to dynamically respond to changes in lipid metabolic status sensed by the ER. In this review, we will discuss recent progress in understanding how LDs interact with the ER.Peer reviewe

    An efficient auxin-inducible degron system with low basal degradation in human cells

    Get PDF
    Auxin-inducible degron technology allows rapid and controlled protein depletion. However, basal degradation without auxin and inefficient auxin-inducible depletion have limited its utility. We have identified a potent auxin-inducible degron system composed of auxin receptor F-box protein AtAFB2 and short degron minilAA7. The system showed minimal basal degradation and enabled rapid auxin-inducible depletion of endogenous human transmembrane, cytoplasmic and nuclear proteins in 1 h with robust functional phenotypes.Peer reviewe

    Membrane Curvature Catalyzes Lipid Droplet Assembly

    Get PDF
    Lipid droplet (LD) biogenesis begins in the endoplasmic reticulum (ER) bilayer, but how the ER topology impacts this process is unclear. An early step in LD formation is nucleation, wherein free neutral lipids, mainly triacylglycerols (TGs) and sterol esters (SEs), condense into a nascent LD. How this transition occurs is poorly known. Here, we found that LDs preferably assemble at ER tubules, with higher curvature than ER sheets, independently of the LD assembly protein seipin. Indeed, the critical TG concentration required for initiating LD assembly is lower at curved versus flat membrane regions. In agreement with this finding, flat ER regions bear higher amounts of free TGs than tubular ones and present less LDs. By using an in vitro approach, we discovered that the presence of free TGs in tubules is energetically unfavorable, leading to outflow of TGs to flat membrane regions or condensation into LDs. Accordingly, in vitro LD nucleation can be achieved by the sole increase of membrane curvature. In contrast to TGs, the presence of free SEs is favored at tubules and increasing SE levels is inhibitory to the curvature-induced nucleation of TG LDs. Finally, we found that seipin is enriched at ER tubules and controls the condensation process, preventing excessive tubule-induced nucleation. The absence of seipin provokes erratic LD nucleation events determined by the abundance of ER tubules. In summary, our data indicate that membrane curvature catalyzes LD assembly.Peer reviewe

    Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage

    Get PDF
    Lipid droplets (LDs) are cellular organelles specialized in triacylglycerol (TG) storage undergoing homotypic clustering and fusion. In non-adipocytic cells with numerous LDs this is balanced by poorly understood droplet dissociation mechanisms. We identify non-muscle myosin IIa (NMIIa/MYH-9) and formin-like 1 (FMNL1) in the LD proteome. NMIIa and actin filaments concentrate around LDs, and form transient foci between dissociating LDs. NMIIa depletion results in decreased LD dissociations, enlarged LDs, decreased hydrolysis and increased storage of TGs. FMNL1 is required for actin assembly on LDs in vitro and for NMIIa recruitment to LDs in cells. We propose a novel acto-myosin structure regulating lipid storage: FMNL1-dependent assembly of myosin II-functionalized actin filaments on LDs facilitates their dissociation, thereby affecting LD surface-to-volume ratio and enzyme accessibility to TGs. In neutrophilic leucocytes from MYH9-related disease patients NMIIa inclusions are accompanied by increased lipid storage in droplets, suggesting that NMIIa dysfunction may contribute to lipid imbalance in man.Peer reviewe

    ATPase activity of DFCP1 controls selective autophagy

    Get PDF
    Cellular homeostasis is governed by removal of damaged organelles and protein aggregates by selective autophagy mediated by cargo adaptors such as p62/SQSTM1. Autophagosomes can assemble in specialized cup-shaped regions of the endoplasmic reticulum (ER) known as omegasomes, which are characterized by the presence of the ER protein DFCP1/ZFYVE1. The function of DFCP1 is unknown, as are the mechanisms of omegasome formation and constriction. Here, we demonstrate that DFCP1 is an ATPase that is activated by membrane binding and dimerizes in an ATP-dependent fashion. Whereas depletion of DFCP1 has a minor effect on bulk autophagic flux, DFCP1 is required to maintain the autophagic flux of p62 under both fed and starved conditions, and this is dependent on its ability to bind and hydrolyse ATP. While DFCP1 mutants defective in ATP binding or hydrolysis localize to forming omegasomes, these omegasomes fail to constrict properly in a size-dependent manner. Consequently, the release of nascent autophagosomes from large omegasomes is markedly delayed. While knockout of DFCP1 does not affect bulk autophagy, it inhibits selective autophagy, including aggrephagy, mitophagy and micronucleophagy. We conclude that DFCP1 mediates ATPase-driven constriction of large omegasomes to release autophagosomes for selective autophagy

    Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact

    Get PDF
    Seipin is an oligomeric integral endoplasmic reticulum (ER) protein involved in lipid droplet (LD) biogenesis. To study the role of seipin in LD formation, we relocalized it to the nuclear envelope and found that LDs formed at these new seipin-defined sites. The sites were characterized by uniform seipin-mediated ER-LD necks. At low seipin content, LDs only grew at seipin sites, and tiny, growth-incompetent LDs appeared in a Rab18-dependent manner. When seipin was removed from ER-LD contacts within 1 h, no lipid metabolic defects were observed, but LDs became heterogeneous in size. Studies in seipin-ablated cells and model membranes revealed that this heterogeneity arises via a biophysical ripening process, with triglycerides partitioning from smaller to larger LDs through droplet-bilayer contacts. These results suggest that seipin supports the formation of structurally uniform ER-LD contacts and facilitates the delivery of triglycerides from ER to LDs. This counteracts ripening-induced shrinkage of small LDs.Peer reviewe

    DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion

    Get PDF
    Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.Peer reviewe

    An efficient auxin-inducible degron system with low basal degradation in human cells

    Get PDF
    Auxin-inducible degron technology allows rapid and controlled protein depletion. However, basal degradation without auxin and inefficient auxin-inducible depletion have limited its utility. We have identified a potent auxin-inducible degron system composed of auxin receptor F-box protein AtAFB2 and short degron minilAA7. The system showed minimal basal degradation and enabled rapid auxin-inducible depletion of endogenous human transmembrane, cytoplasmic and nuclear proteins in 1 h with robust functional phenotypes.Peer reviewe

    Seipin regulates ER-lipid droplet contacts and cargo delivery

    Get PDF
    Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER-LD contacts in human cells, typically via one mobile focal point per LD Seipin appears critical for such contacts since ER-LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin-deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre-existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER-LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.Peer reviewe

    Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes

    Get PDF
    Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.Peer reviewe
    corecore