118 research outputs found

    Correlated electron metal properties of the honeycomb ruthenate Na₂RuO₃

    Get PDF
    We report the synthesis and characterization of polycrystalline Na_{2}RuO_{3}, a layered material in which the Ru^{4+} (4d^{4} configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na_{2}RuO_{3} (C2/c phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetism [x_{0} ~ 1.42(2) x 10^{-3} emu/mol Oe] with no evidence of magnetic ordering down to 1.5 K, and with an absence of dynamic magnetic correlations, as evidenced by neutron scattering spectroscopy. The intrinsic susceptibility (x_{0}) together with the Sommerfeld coefficient of gamma = 11.7(2) mJ/Ru mol K^{2} estimated from heat capacity measurements gives an enhanced Wilson ratio of R_{w} ≈ 8.9(1), suggesting that magnetic correlations may be present in this material. While transport measurements on pressed pellets show nonmetallic behavior, photoemission spectroscopy indicates a small but finite density of states at the Fermi energy, suggesting that the bulk material is metallic. Except for resistivity measurements, which may have been compromised by near-surface and interface effects, all other probes indicate that Na_{2}RuO_{3} is a moderately correlated electron metal. Our results thus stand in contrast to earlier reports that Na_{2}RuO_{3} is an antiferromagnetic insulator at low temperatures

    Tuning of the Ru4+ ground-state orbital population in the 4d(4) Mott insulator Ca2RuO4 achieved by La doping

    Get PDF
    The ground-state orbital occupancy of the Ru4+ ion in Ca2−xLaxRuO4[x = 0, 0.05(1), 0.07(1), and 0.12(1)] was investigated by performing x-ray absorption spectroscopy (XAS) in the vicinity of the O K edge as a function of the angle between the incident beam and the surface of the single-crystal samples. A minimal model of the hybridization between the O 2p states probed at the K edge and the Ru 4d orbitals was used to analyze the XAS data, allowing the ratio of hole occupancies nxy/nyz,zx to be determined as a function of doping and temperature. For the samples displaying a low-temperature insulating ground state (x 0.07), nxy/nyz,zx is found to increase significantly with increasing doping, with increasing temperature acting to further enhance nxy/nyz,zx . For the x = 0.12 sample, which has a metallic ground state, the XAS spectra are found to be independent of temperature and not to be describable by the minimal hybridization model, while being qualitatively similar to the spectra displayed by the x 0.07 samples above their insulating to metallic transitions. To understand the origin of the evolution of the electronic structure of Ca2−xLaxRuO4 across its phase diagram, we have performed theoretical calculations based on a model Hamiltonian, comprising electron-electron correlations, crystal field , and spin-orbit coupling λ, of a Ru-O-Ru cluster, with realistic values used to parametrize the various interactions taken from the literature. Our calculations of the Ru hole occupancy as a function of /λ provide an excellent description of the general trends displayed by the data. In particular they establish that the enhancement of nxy/nyz,zx is driven by significant modifications to the crystal field as the tetragonal distortion of the RuO6 octahedral changes from compressive to tensile with La doping. We have also used our model to show that the hole occupancy of the O 2p and Ru 4d orbitals displays the same general trend as a function of /λ, thus validating the minimal hybridization model used to analyze the data. In essence, our results suggest that the predominant mechanism driving the emergence of the low-temperature metallic phase in La-doped Ca2RuO4 is the structurally induced redistribution of holes within the t2g orbitals, rather than the injection of free carriers

    Strain control of a bandwidth-driven spin reorientation in Ca₃Ru₂O₇

    Get PDF
    The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca3Ru2O7, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a 90∘ in-plane reorientation. Here, we show how the transition is driven by a lattice strain that tunes the electronic bandwidth. We apply uniaxial stress to single crystals of Ca3Ru2O7, using neutron and resonant x-ray scattering to simultaneously probe the structural and magnetic responses. These measurements demonstrate that the transition can be driven by externally induced strain, stimulating the development of a theoretical model in which an internal strain is generated self-consistently to lower the electronic energy. We understand the strain to act by modifying tilts and rotations of the RuO6 octahedra, which directly influences the nearest-neighbour hopping. Our results offer a blueprint for uncovering the driving force behind coupled phase transitions, as well as a route to controlling them

    Selective probing of magnetic order on Tb and Ir sites in stuffed Tb<sub>2+x</sub>Ir<sub>2-x</sub>O<sub>7-y</sub> using resonant X-ray scattering

    Get PDF
    We study the magnetic structure of the ``stuffed" (Tb-rich) pyrochlore iridate Tb2+x_{2+x}Ir2x_{2-x}O7y_{7-y}, using resonant elastic x-ray scattering (REXS). In order to disentangle contributions from Tb and Ir magnetic sublattices, experiments were performed at the Ir L3L_3 and Tb M5M_5 edges, which provide selective sensitivity to Ir 5d5d and Tb 4f4f magnetic moments, respectively. At the Ir L3L_3 edge, we found the onset of long-range k=0{\bf k}={\bf 0} magnetic order below TNIrT_{N}^\text{Ir}\sim\,71\,K, consistent with the expected signal of all-in all-out (AIAO) magnetic order. Using a single-ion model to calculate REXS cross-sections, we estimate an ordered magnetic moment of μ5dIr0.34(3)μB\mu_{5d}^{\text{Ir}} \approx 0.34(3)\,\mu_B at 5\,K. At the Tb M5M_5 edge, long-range k=0{\bf k}={\bf 0} magnetic order appeared below 40\sim40\,K, also consistent with an AIAO magnetic structure on the Tb site. Additional insight into the magnetism of the Tb sublattice is gleaned from measurements at the M5M_5 edge in applied magnetic fields up to 6\,T, which is found to completely suppress the Tb AIAO magnetic order. In zero applied field, the observed gradual onset of the Tb sublattice magnetisation with temperature suggests that it is induced by the magnetic order on the Ir site. The persistence of AIAO magnetic order, despite the greatly reduced ordering temperature and moment size compared to stoichiometric Tb2_{2}Ir2_{2}O7_{7}, for which TNIr=130T_{N}^{\text{Ir}} =130\,K and μ5dIr=0.56μB\mu_{5d}^{\text{Ir}}=0.56\,\mu_B, indicates that stuffing could be a viable means of tuning the strength of electronic correlations, thereby potentially offering a new strategy to achieve topologically non-trivial band crossings in pyrochlore iridates

    Influence of the calcium concentration in the presence of organic phosphorus on the physicochemical compatibility and stability of all-in-one admixtures for neonatal use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm infants need high amounts of calcium and phosphorus for bone mineralization, which is difficult to obtain with parenteral feeding due to the low solubility of these salts. The objective of this study was to evaluate the physicochemical compatibility of high concentrations of calcium associated with organic phosphate and its influence on the stability of AIO admixtures for neonatal use.</p> <p>Methods</p> <p>Three TPN admixture formulas were prepared in multilayered bags. The calcium content of the admixtures was adjusted to 0, 46.5 or 93 mg/100 ml in the presence of a fixed organic phosphate concentration as well as lipids, amino acids, inorganic salts, glucose, vitamins and oligoelements at pH 5.5. Each admixture was stored at 4°C, 25°C or 37°C and evaluated over a period of 7 days. The physicochemical stability parameters evaluated were visual aspect, pH, sterility, osmolality, peroxide formation, precipitation, and the size of lipid globules.</p> <p>Results</p> <p>Color alterations occurred from the first day on, and reversible lipid film formation from the third day of study for the admixtures stored at 25°C and 37°C. According to the parameters evaluated, the admixtures were stable at 4°C; and none of them presented precipitated particles due to calcium/phosphate incompatibility or lipid globules larger than 5 μm, which is the main parameter currently used to evaluate lipid emulsion stability. The admixtures maintained low peroxide levels and osmolarity was appropriate for parenteral administration.</p> <p>Conclusion</p> <p>The total calcium and calcium/phosphorus ratios studied appeared not to influence the physicochemical compatibility and stability of AIO admixtures.</p

    Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering

    Get PDF
    Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon ( e -ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We perform carbon K -edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the π ∗ and σ ∗ electronic states. Our high-resolution data reveal detailed structure in the multiphonon RIXS features that directly encodes the momentum dependence of the e -ph interaction strength. We develop a Green’s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the e -ph interaction through the Brillouin zone, being concentrated at the Γ and K points for the π ∗ states while being significant at all momenta for the σ ∗ states. Our results advance the interpretation of phonon excitations in RIXS and extend its applicability as a probe of e -ph interactions to a new range of out-of-equilibrium situations

    Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    Get PDF
    Background: In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods: Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results: Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion: The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.Swedish International Development Cooperation Agency, Department for research Cooperation (Sida-SAREC) [75007082/03]info:eu-repo/semantics/publishedVersio
    corecore