18 research outputs found

    Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models

    Get PDF
    We examine the influence of increased resolution on four long-standing biases using five different climate models developed within the PRIMAVERA project. The biases are the warm eastern tropical oceans, the double Intertropical Convergence Zone (ITCZ), the warm Southern Ocean, and the cold North Atlantic. Atmosphere resolution increases from ∌100–200 to ∌25–50 km, and ocean resolution increases from (eddy-parametrized) to (eddy-present). For one model, ocean resolution also reaches ∘ (eddy-rich). The ensemble mean and individual fully coupled general circulation models and their atmosphere-only versions are compared with satellite observations and the ERA5 reanalysis over the period 1980–2014. The four studied biases appear in all the low-resolution coupled models to some extent, although the Southern Ocean warm bias is the least persistent across individual models. In the ensemble mean, increased resolution reduces the surface warm bias and the associated cloud cover and precipitation biases over the eastern tropical oceans, particularly over the tropical South Atlantic. Linked to this and to the improvement in the precipitation distribution over the western tropical Pacific, the double-ITCZ bias is also reduced with increased resolution. The Southern Ocean warm bias increases or remains unchanged at higher resolution, with small reductions in the regional cloud cover and net cloud radiative effect biases. The North Atlantic cold bias is also reduced at higher resolution, albeit at the expense of a new warm bias that emerges in the Labrador Sea related to excessive ocean deep mixing in the region, especially in the ORCA025 ocean model. Overall, the impact of increased resolution on the surface temperature biases is model-dependent in the coupled models. In the atmosphere-only models, increased resolution leads to very modest or no reduction in the studied biases. Thus, both the coupled and atmosphere-only models still show large biases in tropical precipitation and cloud cover, and in midlatitude zonal winds at higher resolutions, with little change in their global biases for temperature, precipitation, cloud cover, and net cloud radiative effect. Our analysis finds no clear reductions in the studied biases due to the increase in atmosphere resolution up to 25–50 km, in ocean resolution up to 0.25∘, or in both. Our study thus adds to evidence that further improved model physics, tuning, and even finer resolutions might be necessary.This research has been supported by the Horizon2020 project PRIMAVERA (H2020 GA 641727) and IS-ENES3 (H2020 GA 824084). Eduardo Moreno-Chamarro acknowledges funding from the Spanish Science and Innovation Ministry (Ministerio de Ciencia e InnovaciĂłn) via the STREAM project (PID2020-114746GB-I00) and from the ESA contract CMUG-CCI3-TECHPROP. Etienne Tourigny has received funding from the European Union's Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement no. 748750 (SPFireSD project).Peer Reviewed"Article signat per 13 autors/es: Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale"Postprint (published version

    Evaluation of native Earth system model output with ESMValTool v2.6.0

    Get PDF
    Earth system models (ESMs) are state-of-the-art climate models that allow numerical simulations of the past, present-day, and future climate. To extend our understanding of the Earth system and improve climate change projections, the complexity of ESMs heavily increased over the last decades. As a consequence, the amount and volume of data provided by ESMs has increased considerably. Innovative tools for a comprehensive model evaluation and analysis are required to assess the performance of these increasingly complex ESMs against observations or reanalyses. One of these tools is the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of ESMs. Input data for ESMValTool needs to be formatted according to the CMOR (Climate Model Output Rewriter) standard, a process that is usually referred to as “CMORization”. While this is a quasi-standard for large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP), this complicates the application of ESMValTool to non-CMOR-compliant climate model output. In this paper, we describe an extension of ESMValTool introduced in v2.6.0 that allows seamless reading and processing of “native” climate model output, i.e., operational output produced by running the climate model through the standard workflow of the corresponding modeling institute. This is achieved by an extension of ESMValTool's preprocessing pipeline that performs a CMOR-like reformatting of the native model output during runtime. Thus, the rich collection of diagnostics provided by ESMValTool is now fully available for these models. For models that use unstructured grids, a further preprocessing step required to apply many common diagnostics is regridding to a regular latitude–longitude grid. Extensions to ESMValTool's regridding functions described here allow for more flexible interpolation schemes that can be used on unstructured grids. Currently, ESMValTool supports nearest-neighbor, bilinear, and first-order conservative regridding from unstructured grids to regular grids. Example applications of this new native model support are the evaluation of new model setups against predecessor versions, assessing of the performance of different simulations against observations, CMORization of native model data for contributions to model intercomparison projects, and monitoring of running climate model simulations. For the latter, new general-purpose diagnostics have been added to ESMValTool that are able to plot a wide range of variable types. Currently, five climate models are supported: CESM2 (experimental; at the moment, only surface variables are available), EC-Earth3, EMAC, ICON, and IPSL-CM6. As the framework for the CMOR-like reformatting of native model output described here is implemented in a general way, support for other climate models can be easily added.The development of ESMValTool is supported by the projects “Climate-Carbon Interactions in the Current Century” (4C; grant agreement no. 821003), “Earth System Models for the Future” (ESM2025; grant agreement no. 101003536), “Infrastructure for the European Network for Earth System Modelling - Phase 3” (IS-ENES3; grant agreement no. 824084), and the European Research Council (ERC) Synergy Grant “Understanding and Modelling the Earth System with Machine Learning” (USMILE; grant agreement no. 855187) under the European Union's Horizon 2020 Research and Innovation Programme. This study is a contribution to the project S1 of the Collaborative Research Centre TRR 181 “Energy Transfers in Atmosphere and Ocean” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (project no. 274762653). Brian Medeiros acknowledges support by the U.S. Department of Energy (award no. DE-SC0022070), the National Science Foundation (NSF) (IA 1947282), the National Center for Atmospheric Research, which is a major facility sponsored by the NSF (cooperative agreement no. 1852977), and the National Oceanic and Atmospheric Administration (award no. NA20OAR4310392). Tobias Stacke acknowledges funding support from the European Research Council (ERC) under the European Union's Horizon 2020 Programme (grant agreement no. 951288). This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under the project IDs bd0854, bd1179, and id0853. We acknowledge the World Climate Research Programme (WCRP), which, through its Working Group on Coupled Modeling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making their model output available, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP and ESGF. We would like to thank Mattia Righi (DLR) for providing helpful comments about the manuscript.Peer Reviewed"Article signat per 15 autors/es:Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, RĂ©mi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, StĂ©phane SĂ©nĂ©si, JĂ©rĂŽme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring"Postprint (published version

    Evaluation of Native Earth System Model Output with ESMValTool v2.6.0

    Get PDF
    Earth system models (ESMs) are state-of-the-art climate models that allow numerical simulations of the past, present-day, and future climate. To extend our understanding of the Earth system and improve climate change projections, the complexity of ESMs heavily increased over the last decades. As a consequence, the amount and volume of data provided by ESMs has increased considerably. Innovative tools for a comprehensive model evaluation and analysis are required to assess the performance of these increasingly complex ESMs against observations or reanalyses. One of these tools is the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of ESMs. Input data for ESMValTool need to be formatted according to the CMOR (Climate Model Output Rewriter) standard, a process that is usually referred to as CMORization. While this is a quasi-standard for large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP), this complicates the application of ESMValTool to non-CMOR-compliant climate model output. In this paper, we describe an extension of ESMValTool introduced in v2.6.0 that allows seamless reading and processing native climate model output, i.e., raw output directly produced by the climate model. This is achieved by an extension of ESMValTool’s preprocessing pipeline that performs a CMOR-like reformatting of the native model output during runtime. Thus, the rich collection of diagnostics provided by ESMValTool is now fully available for these models. For models that use unstructured grids, a further preprocessing step required to apply many common diagnostics is regridding to a regular latitude-longitude grid. Extensions to ESMValTool’s regridding functions described here allow for more flexible interpolation schemes that can be used on unstructured grids. Currently, ESMValTool supports nearest-neighbor, bilinear, and first-order conservative regridding from unstructured grids to regular grids. Example applications of this new native model support are the evaluation of new model setups against predecessor versions, assessing of the performance of different simulations against observations, CMORization of native model data for contributions to model intercomparison projects, and monitoring of running climate model simulations. For the latter, new general-purpose diagnostics have been added to ESMValTool that are able to plot a wide range of variable types. Currently, five climate models are supported: CESM2 (experimental; will be fully available in ESMValTool v2.7.0), EC-Earth3, EMAC, ICON, and IPSL-CM6. As the framework for the CMOR-like reformatting of native model output described here is implemented in a general way, support for other climate models can be easily added

    Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP

    Get PDF
    This paper complements a series of now four publications that document the release of the Earth System Model Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) which are participating in the Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). Furthermore, datasets from other models and observations can be analysed. The diagnostics for the hydrological cycle include several precipitation and drought indices, as well as hydroclimatic intensity and indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). The latter are also used for identification of extreme events, for impact assessment, and to project and characterize the risks and impacts of climate change for natural and socio-economic systems. Further impact assessment diagnostics are included to compute daily temperature ranges and capacity factors for wind and solar energy generation. Regional scales can be analysed with new diagnostics implemented for selected regions and stochastic downscaling. ESMValTool v2.0 also includes diagnostics to analyse large multi-model ensembles including grouping and selecting ensemble members by user-specified criteria. Here, we present examples for their capabilities based on the well-established CMIP Phase 5 (CMIP5) dataset.This research has been supported by the Copernicus Climate Change Service (C3S) (Metrics and Access to Global Indices for Climate Projections (C3S-MAGIC), C3S_34a Lot 2), the Helmholtz-Gemeinschaft (Advanced Earth System Model Evaluation for CMIP (grant no. EVal4CMIP)), the Horizon 2020 Framework Programme, H2020 Societal Challenges (CRESCENDO (grant no. 641816)), the Federal Ministry of Education and Research (BMBF) (grant no. CMIP6-DICAD), and the Horizon 2020 Framework Programme, H2020 Excellent Science (IS-ENES3 (grant no. 824084)). The article processing charges for this open-access publication were covered by the University of Bremen.Peer Reviewed"Article signat per 26 autors/es: Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç LledĂł, Christian Wilhelm Mohr, Aytaç Paçal, NĂșria PĂ©rez-ZanĂłn, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyrin "Postprint (published version

    Evaluation of native Earth system model output with ESMValTool v2.6.0

    No full text
    International audienceAbstract. Earth system models (ESMs) are state-of-the-art climate models that allow numerical simulations of the past, present-day, and future climate. To extend our understanding of the Earth system and improve climate change projections, the complexity of ESMs heavily increased over the last decades. As a consequence, the amount and volume of data provided by ESMs has increased considerably. Innovative tools for a comprehensive model evaluation and analysis are required to assess the performance of these increasingly complex ESMs against observations or reanalyses. One of these tools is the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of ESMs. Input data for ESMValTool needs to be formatted according to the CMOR (Climate Model Output Rewriter) standard, a process that is usually referred to as “CMORization”. While this is a quasi-standard for large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP), this complicates the application of ESMValTool to non-CMOR-compliant climate model output. In this paper, we describe an extension of ESMValTool introduced in v2.6.0 that allows seamless reading and processing of “native” climate model output, i.e., operational output produced by running the climate model through the standard workflow of the corresponding modeling institute. This is achieved by an extension of ESMValTool's preprocessing pipeline that performs a CMOR-like reformatting of the native model output during runtime. Thus, the rich collection of diagnostics provided by ESMValTool is now fully available for these models. For models that use unstructured grids, a further preprocessing step required to apply many common diagnostics is regridding to a regular latitude–longitude grid. Extensions to ESMValTool's regridding functions described here allow for more flexible interpolation schemes that can be used on unstructured grids. Currently, ESMValTool supports nearest-neighbor, bilinear, and first-order conservative regridding from unstructured grids to regular grids. Example applications of this new native model support are the evaluation of new model setups against predecessor versions, assessing of the performance of different simulations against observations, CMORization of native model data for contributions to model intercomparison projects, and monitoring of running climate model simulations. For the latter, new general-purpose diagnostics have been added to ESMValTool that are able to plot a wide range of variable types. Currently, five climate models are supported: CESM2 (experimental; at the moment, only surface variables are available), EC-Earth3, EMAC, ICON, and IPSL-CM6. As the framework for the CMOR-like reformatting of native model output described here is implemented in a general way, support for other climate models can be easily added

    Earth System Model Evaluation Tool (ESMValTool) v2.0-technical overview

    Get PDF
    This paper describes the second major release of the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). Compared to version 1.0, released in 2016, ESMValTool version 2.0 (v2.0) features a brand new design, with an improved interface and a revised preprocessor. It also Features a significantly enhanced diagnostic part that is described in three companion papers. The new version of ESMValTool has been specifically developed to target the increased data volume of CMIP Phase 6 (CMIP6) and the related challenges posed by the analysis and the evaluation of Output from multiple high-resolution or complex ESMs. The new version takes advantage of state-of-the-art computational libraries and methods to deploy an efficient and user-friendly data processing. Common operations on the input data (such as regridding or computation of multi-model statistics) are centralized in a highly optimized preprocessor, which allows applying a series of preprocessing functions before diagnostics scripts are applied for in-depth scientific analysis of the model output. Performance tests conducted on a set of standard diagnostics show that the new version is faster than ist predecessor by about a factor of 3. The performance can be further improved, up to a factor of more than 30, when the newly introduced task-based parallelization options are used, which enable the efficient exploitation of much larger computing infrastructures. ESMValTool v2.0 also includes a revised and simplified installation procedure, the setting of user-configurable options based on modern language formats, and high code quality standards following the best practices for software development

    Earth System Model Evaluation Tool (ESMValTool) v2.0-diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP

    Get PDF
    This paper complements a series of now four publications that document the release of the Earth System Model Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) which are participating in the Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). Furthermore, datasets from other models and observations can be analysed. The diagnostics for the hydrological cycle include several precipitation and drought indices, as well as hydroclimatic intensity and indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). The latter are also used for identification of extreme events, for impact assessment, and to project and characterize the risks and impacts of climate change for natural and socio-economic systems. Further impact assessment diagnostics are included to compute daily temperature ranges and capacity factors for wind and solar energy generation. Regional scales can be analysed with new diagnostics implemented for selected regions and stochastic downscaling. ESMValTool v2.0 also includes diagnostics to analyse large multi-model ensembles including grouping and selecting ensemble members by userspecified criteria. Here, we present examples for their capabilities based on the well-established CMIP Phase 5 (CMIP5) dataset

    Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation and analysis of Earth system models in CMIP

    Get PDF
    This paper complements a series of now four publications that document the release of the Earth System Model Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of 25 scientists aiming to facilitate the evaluation and comparison of Earth System Models (ESMs) which are participating in the Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs participating in CMIP Phase 6 (CMIP6)
    corecore