35 research outputs found

    Myocardial ischemic subject's thymus fat: A novel source of multipotent stromal cells

    Get PDF
    Objective Adipose Tissue Stromal Cells (ASCs) have important clinical applications in the regenerative medicine, cell replacement and gene therapies. Subcutaneous Adipose Tissue (SAT) is the most common source of these cells. The adult human thymus degenerates into adipose tissue (TAT). However, it has never been studied before as a source of stem cells. Material and Methods We performed a comparative characterization of TAT-ASCs and SAT-ASCs from myocardial ischemic subjects (n = 32) according to the age of the subjects. Results TAT-ASCs and SAT-ASCs showed similar features regarding their adherence, morphology and in their capacity to form CFU-F. Moreover, they have the capacity to differentiate into osteocyte and adipocyte lineages; and they present a surface marker profile corresponding with stem cells derived from AT; CD73+CD90+CD105+CD14-CD19-CD45-HLA-DR. Interestingly, and in opposition to SAT-ASCs, TAT-ASCs have CD14+CD34+CD133+CD45- cells. Moreover, TAT-ASCs from elderly subjects showed higher adipogenic and osteogenic capacities compared to middle aged subjects, indicating that, rather than impairing; aging seems to increase adipogenic and osteogenic capacities of TAT-ASCs. Conclusions This study describes the human TAT as a source of mesenchymal stem cells, which may have an enormous potential for regenerative medicine.Instituto de Salud Carlos III/FEDER, EU (PI10/01947, PI13/02628), CTS-7895 from the Consejer?a de Econom?a e Innovaci?n, Ciencia y Empleo, Junta de Andaluc?a/FEDER, EU. R. El Bekay is supported by fellowships from the ISCIII/FEDER, EU "Miguel Servet II" (CPII13/00041). AV-R is under a contract Proyectos de I+D+i para j?venes investigadores from the Ministerio de Econom?a y Competitividad (SAF2014-60649-JIN) and co-funded by Fondo Europeo de Desarrollo Regional-FEDER.Scopu

    Au@16-pH-16/miR-21 mimic nanosystem: An efficient treatment for obesity through browning and thermogenesis induction

    Get PDF
    Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 μg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.Instituto de Salud Carlos III (ISCIII) PI21/01924, PI18/00785European Union (UE) PI21/01924, PI18/00785European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) PI20-01274Universidad de Sevilla 2021/00001297Junta de Andalucía PI20-01274, PI-0235-2021, DOC-01138, RC-0006-2020, C-0060-2018, PI-0092–2017Universidad de Málaga RC-0001-2021Ministerio de Economía y Competitividad (MINECO). España SAF2014-60649-JI

    RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    Get PDF
    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.Instituto de Salud Carlos III (PI10/01947, PI13/02628) with Fondos FEDER and the Consejería de Economía e Innovación, Ciencia y Empleo, Junta de Andalucía (CTS-7895) with Fondos FEDER. R. El Bekay is under a contract Miguel Servet type II (CPII13/00041) from the Instituto de Salud Carlos III. F-JB-S is a recipient of a "Miguel Servet II" research contract (CPII13/00042) and also belongs to the regional "Nicolás Monardes" research program of the Consejería de Salud (C-0070-2012; Junta de Andalucía, Spain). This work was supported by the FIS-Thematic Networks and Co-Operative Research Centres RIRAAF (RD07-0064). JM is under the Programa de Intensificación de la Actividad Investigadora del Sistema Nacional de Salud. AV-R is under a contract Proyectos de I+D+i para jóvenes investigadores from the Ministerio de Economía y Competitividad (SAF2014-60649-JIN). S-YR-Z is recipient of a post-doctoral contract from Consejería de Salud de la Junta de Andalucía (RH-0070-2013)

    Rac2 GTPase activation by angiotensin II is modulated by Ca2+/calcineurin and mitogen-activated protein kinases in human neutrophils

    Get PDF
    Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca2+ elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca2+/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.This work was financed by grants from the Ministerio de Educación y Ciencia (BFU2006-13802), and the Consejería de Innovación, Ciencia y Empresa (P06-CTS-1936), Junta de Andalucía, Spain, awarded to F S

    Au@16-pH-16/miR-21 mimic nanosystem: An efficient treatment for obesity through browning and thermogenesis induction

    Get PDF
    Despite the abundance of registered clinical trials worldwide, the availability of effective drugs for obesity treatment is limited due to their associated side effects. Thus, there is growing interest in therapies that stimulate energy expenditure in white adipose tissue. Recently, we demonstrated that the delivery of a miR-21 mimic using JetPEI effectively inhibits weight gain in an obese mouse model by promoting metabolism, browning, and thermogenesis, suggesting the potential of miR-21 mimic as a treatment for obesity. Despite these promising results, the implementation of more advanced delivery system techniques for miR-21 mimic would greatly enhance the advancement of safe and efficient treatment approaches for individuals with obesity in the future. Our objective is to explore whether a new delivery system based on gold nanoparticles and Gemini surfactants (Au@16-ph-16) can replicate the favorable effects of the miR-21 mimic on weight gain, browning, and thermogenesis. We found that dosages as low as 0.2 μg miR-21 mimic /animal significantly inhibited weight gain and induced browning and thermogenic parameters. This was evidenced by the upregulation of specific genes and proteins associated with these processes, as well as the biogenesis of beige adipocytes and mitochondria. Significant increases in miR-21 levels were observed in adipose tissue but not in other tissue types. Our data indicates that Au@16-ph-16 could serve as an effective delivery system for miRNA mimics, suggesting its potential suitability for the development of future clinical treatments against obesity.This research was supported by the following grants: This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project PI21/01924 and PI18/00785 and co-funded by the European Union, by the Consejería de Transformación Económica, Industria, Conocimiento y Universidades-Junta de Andalucía and ERDF-EU (PI20-01274) and by University of Sevilla VI PP USO SSGG (2021/00001297). PI-0092–2017 and PI-0235–2021 from Consejeria de Salud (Junta de Andalucia), Spain. S.L. is a recipient of a Plan Andaluz de Investigación, Desarrollo e Innovación post-doctoral grant from the Consejería de Economía, Conocimiento, Empresas y Universidades (DOC-01138). A.M.G. was a recipient of a Plan Propio de Investigación, Transferencia y Divulgación Científica postdoctoral grant from University of Málaga. FJBS, and REBAV-R are under contract with the ‘Nicolas Monardes’ program from the Servicio Andaluz de Salud, Consejería de Salud y Consumo-Junta de Andalucía (RC-0001-2021, RC-0006-2020 and C-0060-2018, respectively. A.V-R. was supported by a grant from the Ministerio de Economía y Competitividad (Proyectos I+D+i para Jóvenes Investigadores, SAF2014-60649-JIN).Peer reviewe

    The Renin Angiotensin System (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention

    Get PDF
    Despite emergence of new systemic therapies, metastatic melanoma remains a challenging and often fatal form of skin cancer. The renin–angiotensin system (RAS) is a major physiological regulatory pathway controlling salt–water equilibrium, intravascular volume and blood pressure. Biological effects of the RAS are mediated by the vasoactive hormone angiotensin II (AngII) via two receptor subtypes, AT1R (encoded by AGTR1) and AT2R (encoded by AGTR2). We report decreasing expression and increasing CpG island methylation of AGTR1 in metastatic versus primary melanoma and detection in serum of methylated genomic DNA from the AGTR1 CpG island in metastatic melanoma implying that AGTR1 encodes a tumour suppressor function in melanoma. Consistent with this hypothesis, antagonism of AT1R using losartan or shRNA-mediated knockdown in melanoma cell lines expressing AGTR1 resulted in acquisition of the ability to proliferate in serum-free conditions. Conversely, ectopic expression of AGTR1 in cell lines lacking endogenous expression inhibits proliferation irrespective of the presence of AngII implying a ligand-independent suppressor function for AT1R. Treatment of melanoma cell lines expressing endogenous AT2R with either AngII or the AT2R-selective agonist Y6AII induces proliferation in serum-free conditions whereas the AT2R-specific antagonists PD123319 and EMA401 inhibit melanoma growth and angiogenesis and potentiate inhibitors of BRAF and MEK in cells with BRAF V600 mutations. Our results demonstrate that the RAS has both oncogenic and tumour suppressor functions in melanoma. Pharmacological inhibition of AT2R may provide therapeutic opportunities in melanomas expressing this receptor and AGTR1 CpG island methylation in serum may serve as a novel biomarker of metastatic melanoma

    Expression of the transcription factor NFAT2 in human neutrophils: IgE-dependent, Ca2+- and calcineurin-mediated NFAT2 activation

    Get PDF
    NFAT (nuclear factors of activated T cells) proteins constitute a family of transcription factors involved in mediating signal transduction. The presence of NFAT isoforms has been described in all cell types of the immune system, with the exception of neutrophils. In the present work we report for the first time the expression in human neutrophils of NFAT2 mRNA and protein. We also report that specific antigens were able to promote NFAT2 protein translocation to the nucleus, an effect that was mimicked by the treatment of neutrophils with anti-immunoglobulin E (anti-IgE) or anti-Fc{epsilon}-receptor antibodies. Antigens, anti-IgE and anti-Fc{epsilon}Rs also increased Ca2+ release and the intracellular activity of calcineurin, which was able to interact physically with NFAT2, in parallel to eliciting an enhanced NFAT2 DNA-binding activity. In addition, specific chemical inhibitors of the NFAT pathway, such as cyclosporin A and VIVIT peptide, abolished antigen and anti-IgE-induced cyclooxygenase-2 (COX2) gene upregulation and prostaglandin (PGE2) release, suggesting that this process is through NFAT. Our results provide evidence that NFAT2 is constitutively expressed in human neutrophils, and after IgE-dependent activation operates as a transcription factor in the modulation of genes, such as COX2, during allergic inflammation.A.V. and P.C. were supported by fellowships from the Ministerio de Ciencia y Tecnología, and Fundación Alergol, Spain. R.E. is a recipient of a postdoctoral grant (Juan de la Cierva) (SAF2003-00200) from the Ministerio de Educación y Ciencia, Spain. This work was funded by grants from the Consejería de Salud, Junta de Andalucía (SAS-55/04 and SAS-74/04)

    Métodos para el diagnóstico de enfermos atópicos sensibles a componentes alergénicos del polen de olea europaea (olivo)

    No full text
    Biomarcadores y método para el diagnostico, estratificación, seguimiento y pronostico de la evolución de la enfermedad alérgica a polen del olivo, kit o dispositivo y usos.Españ

    15-Deoxy-Δ12,14-prostaglandin J2 induces heme oxygenase-1 gene expression in a reactive oxygen species-dependent manner in human lymphocytes

    Get PDF
    15-Deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) has been recently proposed as a potent anti-inflammatory agent. However, the mechanisms by which 15dPGJ2 mediates its therapeutic effects in vivo are unclear. We demonstrate that 15dPGJ2 at micromolar (2.5–10 µM) concentrations induces the expression of heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, at both mRNA and protein levels in human lymphocytes. In contrast, troglitazone and ciglitazone, two thiazolidinediones that mimic several effects of 15dPGJ2 through their binding to the peroxisome proliferator-activated receptor (PPAR)-γ, did not affect HO-1 expression, and the positive effect of 15dPGJ2 on this process was mimicked instead by other cyclopentenone prostaglandins (PG), such as PGD2 (the precursor of 15dPGJ2) and PGA1 and PGA2 which do not interact with PPAR-γ. Also, 15dPGJ2 enhanced the intracellular production of reactive oxygen species (ROS) and increased xanthine oxidase activity in vitro. Inhibition of intracellular ROS production by N-acetylcysteine, TEMPO, Me2SO, 1,10-phenanthroline, or allopurinol resulted in a decreased 15dPGJ2-dependent HO-1 expression in the cells. Furthermore, buthionine sulfoximine, an inhibitor of reduced glutathione synthesis, or Fe2+/Cu2+ ions enhanced the positive effect of 15dPGJ2 on HO-1 expression. On the other hand, the inhibition of phosphatidylinositol 3-kinase or p38 mitogen-activated protein kinase, or the blockade of transcription factor NF-κB activation, hindered 15dPGJ2-elicited HO-1 expression. Collectively, the present data suggest that 15dPGJ2 anti-inflammatory actions at pharmacological concentrations involve the induction of HO-1 gene expression through mechanisms independent of PPAR-γ activation and dependent on ROS produced via the xanthine/xanthine oxidase system and/or through Fenton reactions. Both phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways also appear implicated in modulation of HO-1 expression by 15dPGJ2.This work was supported in part by Ministerio de Ciencia y Tecnología Grants SAF/2000-117 (to F. S.) and SAF/2000-161 (to F. J. B.) and by a grant from the Fundación SEIAC, Spain (to J. M.)
    corecore