80 research outputs found

    Cluster analysis for the identification of clinical phenotypes among antiphospholipid antibody-positive patients from the APS ACTION Registry

    Get PDF
    Objective: This study aimed to use cluster analysis (CA) to identify different clinical phenotypes among antiphospholipid antibodies (aPL)-positive patients. Methods: The Alliance for Clinical Trials and International Networking (APS ACTION) Registry includes persistently positive aPL of any isotype based on the Sydney antiphospholipid syndrome (APS) classification criteria. We performed CA on the baseline characteristics collected retrospectively at the time of the registry entry of the first 500 patients included in the registry. A total of 30 clinical data points were included in the primary CA to cover the broad spectrum of aPL-positive patients. Results: A total of 497 patients from international centres were analysed, resulting in three main exclusive clusters: (a) female patients with no other autoimmune diseases but with venous thromboembolism (VTE) and triple-aPL positivity; (b) female patients with systemic lupus erythematosus, VTE, aPL nephropathy, thrombocytopaenia, haemolytic anaemia and a positive lupus anticoagulant test; and (c) older men with arterial thrombosis, heart valve disease, livedo, skin ulcers, neurological manifestations and cardiovascular disease (CVD) risk factors. Conclusions: Based on our hierarchical cluster analysis, we identified different clinical phenotypes of aPL-positive patients discriminated by aPL profile, lupus or CVD risk factors. Our results, while supporting the heterogeneity of aPL-positive patients, also provide a foundation to understand disease mechanisms, create new approaches for APS classification and ultimately develop new management approaches

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Antiphospholipid syndrome; its implication in cardiovascular diseases: a review

    Get PDF
    Antiphospholipid syndrome (APLS) is a rare syndrome mainly characterized by several hyper-coagulable complications and therefore, implicated in the operated cardiac surgery patient. APLS comprises clinical features such as arterial or venous thromboses, valve disease, coronary artery disease, intracardiac thrombus formation, pulmonary hypertension and dilated cardiomyopathy. The most commonly affected valve is the mitral, followed by the aortic and tricuspid valve. For APLS diagnosis essential is the detection of so-called antiphospholipid antibodies (aPL) as anticardiolipin antibodies (aCL) or lupus anticoagulant (LA). Minor alterations in the anticoagulation, infection, and surgical stress may trigger widespread thrombosis. The incidence of thrombosis is highest during the following perioperative periods: preoperatively during the withdrawal of warfarin, postoperatively during the period of hypercoagulability despite warfarin or heparin therapy, or postoperatively before adequate anticoagulation achievement. Cardiac valvular pathology includes irregular thickening of the valve leaflets due to deposition of immune complexes that may lead to vegetations and valve dysfunction; a significant risk factor for stroke. Patients with APLS are at increased risk for thrombosis and adequate anticoagulation is of vital importance during cardiopulmonary bypass (CPB). A successful outcome requires multidisciplinary management in order to prevent thrombotic or bleeding complications and to manage perioperative anticoagulation. More work and reporting on anticoagulation management and adjuvant therapy in patients with APLS during extracorporeal circulation are necessary

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Energy and the non-energy inputs substitution: evidence for Italy, Portugal and Spain

    No full text
    The factor demand is modeled for Italy, Portugal and Spain. We estimated a translog cost function with capital, labor and energy over the 1980-1996 period. Our objective regarding energy as input was two-fold: on the one hand, to verify its incorporation as a productive factor, and, on the other, to observe its degree of substitutability with the other classical factors, given the high level of energy dependency of these countries. Using a separability test and confidence intervals for the Allen and price elasticities, our estimates confirmed both the non-separability of the energy input and the existence of consistent substitution between energy and labor only for Italy.
    • 

    corecore