2,671 research outputs found

    Gravitational Interactions of integrable models

    Get PDF
    We couple non-linear σ\sigma-models to Liouville gravity, showing that integrability properties of symmetric space models still hold for the matter sector. Using similar arguments for the fermionic counterpart, namely Gross--Neveu-type models, we verify that such conclusions must also hold for them, as recently suggested.Comment: 8 pages, final version to appear in Physics Letters B Revised version, with misprints corrected and some references adde

    The Landau Pole at Finite Temperature

    Get PDF
    We study the Landau pole in the lambda phi^4 field theory at non-zero and large temperatures. We show that the position of the thermal Landau pole Lambda_L(T) is shifted to higher energies with respect to the zero temperature Landau pole Lambda_L(0). We find for high temperatures T > Lambda_L(0), Lambda_L(T) simeq pi^2 T / log (T / Lambda_L(0)). Therefore, the range of applicability in energy of the lambda phi^4 field theory increases with the temperature.Comment: LaTex, 6 pages, 2 .ps figures. Improved version. To appear in Phys. Rev. D, Rapid Communication

    Building up spacetime with quantum entanglement

    Full text link
    In this essay, we argue that the emergence of classically connected spacetimes is intimately related to the quantum entanglement of degrees of freedom in a non-perturbative description of quantum gravity. Disentangling the degrees of freedom associated with two regions of spacetime results in these regions pulling apart and pinching off from each other in a way that can be quantified by standard measures of entanglement.Comment: Gravity Research Foundation essay, 7 pages, LaTeX, 5 figure

    New Record for the Coffee Berry Borer, Hypothenemus hampei, in Hawaii

    Get PDF
    The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) is endemic to Africa and is the most devastating pest of coffee worldwide. The female bores a hole in the coffee berry and deposits her eggs inside. Upon hatching, larvae feed on the seeds, thus reducing both quality and yields of the marketable product. The coffee berry borer was found in the district of Kona on the island of Hawaii in August 2010 and appears to be restricted to that area

    Dynamical renormalization group approach to relaxation in quantum field theory

    Full text link
    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG).Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths.Comment: LaTex, 27 pages, 2 .ps figure

    The Effect of Active Galactic Nuclei on the Mid-Infrared Aromatic Features

    Full text link
    We present Spitzer measurements of the aromatic (also known as PAH) features for 35 Seyfert galaxies from the revised Shapley-Ames sample and find that the relative strengths of the features differ significantly from those observed in star-forming galaxies. Specifically, the features at 6.2, 7.7, and 8.6 micron are suppressed relative to the 11.3 micron feature in Seyferts. Furthermore, we find an anti-correlation between the L(7.7 micron)/L(11.3 micron) ratio and the strength of the rotational H2 (molecular hydrogen) emission, which traces shocked gas. This suggests that shocks suppress the short-wavelength features by modifying the structure of the aromatic molecules or destroying the smallest grains. Most Seyfert nuclei fall on the relationship between aromatic emission and [Ne II] emission for star-forming galaxies, indicating that aromatic-based estimates of the star-formation rate in AGN host galaxies are generally reasonable. For the outliers from this relationship, which have small L(7.7 micron)/L(11.3 micron) ratios and strong H2 emission, the 11.3 micron feature still provides a valid measure of the star-formation rate.Comment: Accepted for publication in ApJ. 17 pages, 12 figure
    corecore