28 research outputs found

    COLOMBOS v2.0 : an ever expanding collection of bacterial expression compendia

    Get PDF
    The COLOMBOS database (http://www.colombos.net) features comprehensive organism-specific cross-platform gene expression compendia of several bacterial model organisms and is supported by a fully interactive web portal and an extensive web API. COLOMBOS was originally published in PLoS One, and COLOMBOS v2.0 includes both an update of the expression data, by expanding the previously available compendia and by adding compendia for several new species, and an update of the surrounding functionality, with improved search and visualization options and novel tools for programmatic access to the database. The scope of the database has also been extended to incorporate RNA-seq data in our compendia by a dedicated analysis pipeline. We demonstrate the validity and robustness of this approach by comparing the same RNA samples measured in parallel using both microarrays and RNA-seq. As far as we know, COLOMBOS currently hosts the largest homogenized gene expression compendia available for seven bacterial model organisms

    The Putative De-N-acetylase DnpA Contributes to Intracellular and Biofilm-Associated Persistence of Pseudomonas aeruginosa Exposed to Fluoroquinolones

    Get PDF
    Persisters are the fraction of antibiotic-exposed bacteria transiently refractory to killing and are recognized as a cause of antibiotic treatment failure. The putative de-N-acetylase DnpA increases persister levels in Pseudomonas aeruginosa upon exposure to fluoroquinolones in broth. In this study the wild-type PAO1 and its dnpA insertion mutant (dnpA::Tn) were used in parallel and compared for their capacity to generate persisters in broth (surviving fraction after exposure to high antibiotic concentrations) and their susceptibility to antibiotics in models of intracellular infection of THP-1 monocytes and of biofilms grown in microtiter plates. Multiplication in monocytes was evaluated by fluorescence dilution of GFP (expressed under the control of an inducible promoter) using flow cytometry. Gene expression was measured by quantitative RT-PCR. When exposed to fluoroquinolones (ciprofloxacin or levofloxacin) but not to meropenem or amikacin, the dnpA::Tn mutant showed a 3- to 10-fold lower persister fraction in broth. In infected monocytes, fluoroquinolones (but not the other antibiotics) were more effective (difference in Emax: 1.5 log cfu) against the dnpA::Tn mutant than against the wild-type PAO1. Dividing intracellular bacteria were more frequently seen (1.5 to 1.9-fold) with the fluoroquinolone-exposed dnpA::Tn mutant than with its parental strain. Fluoroquinolones (but not the other antibiotics) were also 3-fold more potent to prevent biofilm formation by the dnpA::Tn mutant than by PAO1 as well as to act upon biofilms (1–3 days of maturity) formed by the mutant than by the parental strain. Fluoroquinolones induced the expression of gyrA (4.5–7 fold) and mexX (3.6–5.4 fold) in the parental strain but to a lower extent (3–4-fold for gyrA and 1.8–2.8-fold for mexX, respectively) in the dnpA::Tn mutant. Thus, our data show that a dnpA insertion mutant of P. aeruginosa is more receptive to fluoroquinolone antibacterial effects than its parental strain in infected monocytes or in biofilms. The mechanism of this higher responsiveness could involve a reduced overexpression of the fluoroquinolone target

    Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

    Get PDF
    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies

    Genetic and chemical-molecular approach to study persistence in Pseudomonas aeruginosa to combat chronic infections

    No full text
    <w:latentstyles  Here, we aim to obtain more insight into the mechanistic basis of persistence of P. aeruginosa by characterizing a newly identified gene with a role in antibiotic tolerance. Secondly, we initiated a new research line in which a top-down approach was used to identify compounds that, in combination with conventional antibiotics, reduce the persister fraction of P. aeruginosa.status: publishe

    A Whole-Cell-Based High-Throughput Screening Method to Identify Molecules Targeting Pseudomonas aeruginosa Persister Cells

    No full text
    Despite its clinical relevance and the fact that the phenomenon of persistence was discovered in the 1940s, little is known about the mechanisms behind persister cell formation. Research in this field has mainly focused on the model organism Escherichia coli and few genetic determinants of persistence have been described in other bacterial species, impairing the development of target-based strategies to combat these antibiotic-tolerant cells. In this chapter we describe a top-down large-scale screening method capable of specifically identifying small molecule compounds that, in combination with conventional antibiotics, significantly reduce the persister fraction in Pseudomonas aeruginosa. The method is readily adaptable for other species. Further characterization and analysis of the mode of action of the identified compounds can provide additional insight into the mechanisms behind persister formation and can guide the development of future anti-persister therapies.status: publishe

    Membrane localization and topology of the DnpA protein control fluoroquinolone tolerance in Pseudomonas aeruginosa

    No full text
    DnpA, a putative de-N-acetylase of the PIG-L superfamily, is required for antibiotic tolerance in Pseudomonas aeruginosa Exactly how dnpA (gene locus PA5002) directs the formation of antibiotic-tolerant persister cells is currently unknown. Previous research provided evidence for a role in surface-associated process(es), possibly in lipopolysaccharide biosynthesis. In silico sequence analysis of DnpA predicts a single transmembrane domain and Nin/Cout orientation of DnpA. In contrast, we here show that DnpA is an integral inner membrane protein containing two transmembrane domains, with the major C-terminal part located at the cytoplasmic face. Correct insertion into the inner membrane is necessary for DnpA to promote fluoroquinolone tolerance. The membrane localization of DnpA further supports its role in cell envelope-associated process(es). In addition to shedding light on the biological role of DnpA, this study highlights the risks of overreliance on the predictive value of bioinformatics tools and the importance of rigorous experimental validation of in silico predictions.status: publishe

    The Putative De-N-acetylase DnpA Contributes to Intracellular and Biofilm-Associated Persistence of Pseudomonas aeruginosa Exposed t o Fluoroquinolones

    No full text
    Persisters are the fraction of antibiotic-exposed bacteria transiently refractory to killing and are recognized as a cause of antibiotic treatment failure. The putative de-N-acetylase DnpA increases persister levels in Pseudomonas aeruginosa upon exposure to fluoroquinolones in broth. In this study the wild-type PAO1 and its dnpA insertion mutant (dnpA::Tn) were used in parallel and compared for their capacity to generate persisters in broth (surviving fraction after exposure to high antibiotic concentrations) and their susceptibility to antibiotics in models of intracellular infection of THP-1 monocytes and of biofilms grown in microtiter plates. Multiplication in monocytes was evaluated by fluorescence dilution of GFP (expressed under the control of an inducible promoter) using flow cytometry. Gene expression was measured by quantitative RT-PCR. When exposed to fluoroquinolones (ciprofloxacin or levofloxacin) but not to meropenem or amikacin, the dnpA::Tn mutant showed a 3- to 10-fold lower persister fraction in broth. In infected monocytes, fluoroquinolones (but not the other antibiotics) were more effective (difference in Emax: 1.5 log cfu) against the dnpA::Tn mutant than against the wild-type PAO1. Dividing intracellular bacteria were more frequently seen (1.5 to 1.9-fold) with the fluoroquinolone-exposed dnpA::Tn mutant than with its parental strain. Fluoroquinolones (but not the other antibiotics) were also 3-fold more potent to prevent biofilm formation by the dnpA::Tn mutant than by PAO1 as well as to act upon biofilms (1-3 days of maturity) formed by the mutant than by the parental strain. Fluoroquinolones induced the expression of gyrA (4.5-7 fold) and mexX (3.6-5.4 fold) in the parental strain but to a lower extent (3-4-fold for gyrA and 1.8-2.8-fold for mexX, respectively) in the dnpA::Tn mutant. Thus, our data show that a dnpA insertion mutant of P. aeruginosa is more receptive to fluoroquinolone antibacterial effects than its parental strain in infected monocytes or in biofilms. The mechanism of this higher responsiveness could involve a reduced overexpression of the fluoroquinolone target.status: publishe

    The putative de-N-acetylase DnpA contributes to intracellular and biofilm-associated persistence of Pseudomonas aeruginosa exposed to fluoroquinolones

    No full text
    Persisters are the fraction of antibiotic-exposed bacteria transiently refractory to killing and are recognized as a cause of antibiotic treatment failure. The putative de-N-acetylase DnpA increases persister levels in Pseudomonas aeruginosa upon exposure to fluoroquinolones in broth. In this study the wild-type PAO1 and its dnpA insertion mutant (dnpA::Tn) were used in parallel and compared for their capacity to generate persisters in broth (surviving fraction after exposure to high antibiotic concentrations) and their susceptibility to antibiotics in models of intracellular infection of THP-1 monocytes and of biofilms grown in microtiter plates. Multiplication in monocytes was evaluated by fluorescence dilution of GFP (expressed under the control of an inducible promoter) using flow cytometry. Gene expression was measured by quantitative RT-PCR. When exposed to fluoroquinolones (ciprofloxacin or levofloxacin) but not to meropenem or amikacin, the dnpA::Tn mutant showed a 3- to 10-fold lower persister fraction in broth. In infected monocytes, fluoroquinolones (but not the other antibiotics) were more effective (difference in Emax : 1.5 log cfu) against the dnpA::Tn mutant than against the wild-type PAO1. Dividing intracellular bacteria were more frequently seen (1.5 to 1.9-fold) with the fluoroquinolone-exposed dnpA::Tn mutant than with its parental strain. Fluoroquinolones (but not the other antibiotics) were also 3-fold more potent to prevent biofilm formation by the dnpA::Tn mutant than by PAO1 as well as to act upon biofilms (1-3 days of maturity) formed by the mutant than by the parental strain. Fluoroquinolones induced the expression of gyrA (4.5-7 fold) and mexX (3.6-5.4 fold) in the parental strain but to a lower extent (3-4-fold for gyrA and 1.8 to 2.8-fold for mexX, respectively) in the dnpA::Tn mutant. Thus, our data show that a dnpA insertion mutant of P. aeruginosa is more receptive to fluoroquinolone antibacterial effects than its parental strain in infected monocytes or in biofilms. The mechanism of this higher responsiveness could involve a reduced overexpression of the fluoroquinolone target

    Membrane localization and topology of the DnpA protein control fluoroquinolone tolerance in Pseudomonas aeruginosa

    No full text
    DnpA, a putative de-N-acetylase of the PIG-L superfamily, is required for antibiotic tolerance in Pseudomonas aeruginosa Exactly how dnpA (gene locus PA5002) directs the formation of antibiotic-tolerant persister cells is currently unknown. Previous research provided evidence for a role in surface-associated process(es), possibly in lipopolysaccharide biosynthesis. In silico sequence analysis of DnpA predicts a single transmembrane domain and Nin/Cout orientation of DnpA. In contrast, we here show that DnpA is an integral inner membrane protein containing two transmembrane domains, with the major C-terminal part located at the cytoplasmic face. Correct insertion into the inner membrane is necessary for DnpA to promote fluoroquinolone tolerance. The membrane localization of DnpA further supports its role in cell envelope-associated process(es). In addition to shedding light on the biological role of DnpA, this study highlights the risks of overreliance on the predictive value of bioinformatics tools and the importance of rigorous experimental validation of in silico predictions
    corecore