19 research outputs found

    Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet

    Get PDF
    The current research explores the problem of steady laminar flow of nanofluid on a two dimensional boundary layer using heat transfer of Cassona cross the linearly stretching sheet. The governing equations are partial differential equations which are transformed into non-linear ordinary differential equations by using some similarity transformation. The converted form of the combined non-linear higher-order ODEswith a set of boundary conditions are solved by means of Runge-Kutta 4th-order approach along with the shooting method. The nanoparticle concentration profiles, velocity, and temperature are examined by taking account of their influence of Prandtl number, "Brownian motion parameter ", Lewis number, thermophoresis, and Casson fluid parameter. It is reported that the temperature increase as Nt and Nb increases which causes thickening of the thermal boundary layer. Also it is observed that, there is increment in temperature profile for increasing values of Brownian motion parameter and the energy distribution grows with increment in the values of Thermophoresis parameter. The comparison for the local Nusselt & local Sherwood number has been tabulated with respect to variation of the Brownian Motion Parameter and Thermophoresis parameter. All the findings of the results are graphically represented and discussed.Funding The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively

    Gymnemic acids inhibit hyphal growth and virulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine

    Biomass-Derived Hard Carbon and Nitrogen-Sulfur Co-Doped Graphene for High-Performance Symmetric Sodium Ion Capacitor Devices

    No full text
    An inexpensive bio-mass-derived hard carbon from tamarind pods was used as an anode, and nitrogen and nitrogen (N)/sulfur (S) co-doped graphene were used as a cathode for novel hybrid Na-ion supercapacitors. The structural and surface morphological analyses are investigated using a range of techniques. The 3D network of the heteroatom-doped graphene skeleton edges for N and NS-doping conformations were assigned as N-RGOs (N1s-5.09 at.%) and NS-RGOs (N1s-7.66 at.% and S1s-2.22 at.%) based on energy dispersive X-ray spectroscopy elemental mapping. The negative electrode (T-HC) hard carbon was pre-treated by pre-sodiation with a half-cell process by galvanostatic charge–discharge in a sodium-ion battery at 0.01–2.5 V vs. Na/Na+. The T-HC//NS-RGO, T-HC//N-RGO, and T-HC//RGO were used to construct the Na-ion supercapacitor device. In the CV experiments, the electrochemical galvanostatic charge–discharge was studied at 1.0–4.2 V. The specific capacitance was 352.18 F/g for the T.HC/NS-RGO device and 180.93 F/g for the T.HC/N-RGO device; both were symmetric devices. T.HC/NS-RGO device performance revealed excellent cycling stability, with T-HC//NS-RGO showing 89.26% capacitance retention over 5000 cycles. A carbon–carbon symmetric device, such as a Na-ion hybrid capacitor, can exhibit the characteristics of both batteries and supercapacitors for future electric vehicles

    Facile Preparations of Electrochemically Exfoliated N-Doped Graphene Nanosheets from Spent Zn-Carbon Primary Batteries Recycled for Supercapacitors Using Natural Sea Water Electrolytes

    No full text
    A single production of nitrogen-doped graphene nanosheets was developed in this present work from a spent Zn-C primary battery. The electrochemically exfoliated nitrogen-doped graphene nanosheets (EC-N-GNS) was applied in supercapacitor symmetric devices. As-prepared EC-N-GNS was utilized for a symmetric supercapacitor with natural seawater multivalent ion electrolyte. The recycling of graphite into nitrogen-doped graphene was characterized by X-ray diffraction and RAMAN spectroscopy. The few-layered morphological structures of EC-N-GNS were analyzed by field emission scanning electron microscope and field emission transmission electron microscope. The electrochemical analysis of the cyclic voltammetry curves observed an electrochemical double-layer capacitor (EDLC) behavior with a potential window of −0.8 V to +0.5 V. The electrochemical galvanostatic charge—discharge study was obtained to be maximum specific capacitance (Csp)—67.69 F/g and 43.07 F/g at a current density of 1 A/g. We promising the facile single-step electrochemically exfoliated EC-N-GNS was obtained from a waste zinc-carbon primary battery to recycle the graphite electrodes. The superior electrochemical performance comparatively bulk graphite and EC-N-GNS for potential energy storage supercapacitor applications

    Radiative heat transfer on the peristaltic flow of an electrically conducting nanofluid through wavy walls of a tapered channel

    No full text
    Present analysis deals with the characteristics of radiative heat on the peristaltic flow of nanofluid through wavy walls of a tapered channel. Peristaltic flows within the pumping process arise in the region having lower to higher pressure region. Assumption of velocity slip along with the convective boundary condition energizes the thermal system as well as the flow phenomena. However, the combined effect of Brownian motion and thermophorsis due to the cross-diffusion effect affects the flow properties. One of the significant applications of the flow is that the blood pumping in the human body. It acts as a vehicle through the liquid that past through the wavy channels walls contacting liquids expands in its length due to the dynamical rush. However, solution of the transformed governing flow phenomena is obtained by employing approximate analytical technique known as Variation Parameter Method (VPM). The characteristics of the parameters involved in the system are presented via graphs. Present outcome warrants that, the significance of magnetic strength and flow through the permeable medium may favours to enhance the pumping procedure as the pressure gradient lower down in the non-Darcy medium found to be one of the important observations. Further, significant enhancement in the fluid temperature and concentration profile is exhibited due to the consideration of the convective conditions i.e. the augmentation in the thermal and solutalBiot numbers respectively

    Magnetohydrodynamics and viscosity variation in couple stress squeeze film lubrication between rough flat and curved circular plates

    No full text
    Abstract A simplified mathematical model has been developed for understanding combined effects of surface roughness, viscosity variation and couple stresses on the squeeze film behaviour of a flat and a curved circular plate in the presence of transverse magnetic field. The Stokes (1966) couple stress fluid model is included to account for the couple stresses arising due to the presence of microstructure additives in the lubricant. In the context of Christensen’s (1969) stochastic theory for the lubrication of rough surfaces, two types of one-dimensional roughness patterns (radial and azimuthal) are considered. The governing modified stochastic Reynolds type equations are derived for these roughness patterns. Expressions for the mean squeeze film characteristics are obtained. Numerical computations of the results show that the azimuthal roughness pattern on the curved circular and flat plate results in more pressure buildup whereas performance of the squeeze film suffers due to the radial roughness pattern. Further the Lorentz force characterized by the Hartmann number, couple stress parameter and viscosity variation parameter improve the performance of the squeeze film lubrication as compared to the classical case (Non-magnetic, Newtonian case and non-viscous case)

    Underwater wireless sensor network-based multihop data transmission using hybrid cat cheetah optimization algorithm

    No full text
    Abstract For the conservation and sustainable use of the oceanic environment, monitoring of underwater regions is ineluctable and is effectuated with the aid of an underwater wireless sensor network. It is accoutered with smart equipment, vehicles and sensors and utilized for the transmission of acquired data from the monitoring region and forwarded to the sink nodes (SN) where the data are retrieved. Moreover, data transmission from sensor nodes to SN is complicated by the aquatic environment's inherent complexities. To surpass those issues, the work in this article focusesto propose a Hybrid Cat Cheetah optimization algorithm (HC2OA) that purveys the energy efficient clustering based routing. The network is then partitioned into numerous clusters, each of which is led by a cluster head (CH) and comprised of many sub-clusters (CM). Based on the factors such as distance and residual energy the CH selection is optimized and collects data from the respective CMs and forwarded to the SN with a multi-hop transmission approach. The proposed HC2OA chooses the optimized multi-hop route from the CH to SN. Thus mitigates the complexities over multi-hop routing and CH selection. Simulations are effectuated in the NS2 simulator and analyzed the performance. The results of the study show that the proposed work has significant advantages over state-of-the-art works in terms of network lifetime, packet delivery ratio, and energy consumption. The energy consumption of the proposed work is 0.2 J with a packet delivery ratio is 95%.The network life time of proposed work, with respect to the coverage area around 14 km is approximately 60 h
    corecore