1,642 research outputs found

    Interactions between the Midbrain Superior Colliculus and the Basal Ganglia

    Get PDF
    An important component of the architecture of cortico-basal ganglia connections is the parallel, re-entrant looped projections that originate and return to specific regions of the cerebral cortex. However, such loops are unlikely to have been the first evolutionary example of a closed-loop architecture involving the basal ganglia. A phylogenetically older, series of subcortical loops can be shown to link the basal ganglia with many brainstem sensorimotor structures. While the characteristics of individual components of potential subcortical re-entrant loops have been documented, the full extent to which they represent functionally segregated parallel projecting channels remains to be determined. However, for one midbrain structure, the superior colliculus (SC), anatomical evidence for closed-loop connectivity with the basal ganglia is robust, and can serve as an example against which the loop hypothesis can be evaluated for other subcortical structures. Examination of ascending projections from the SC to the thalamus suggests there may be multiple functionally segregated systems. The SC also provides afferent signals to the other principal input nuclei of the basal ganglia, the dopaminergic neurones in substantia nigra and to the subthalamic nucleus. Recent electrophysiological investigations show that the afferent signals originating in the SC carry important information concerning the onset of biologically significant events to each of the basal ganglia input nuclei. Such signals are widely regarded as crucial for the proposed functions of selection and reinforcement learning with which the basal ganglia have so often been associated

    The Grizzly, April 18, 2013

    Get PDF
    Curriculum Review β€’ Relay Raises Money, Awareness β€’ Tuition Explained β€’ Mental Health Resources Reviewed β€’ Collegeville Community Day April 20 β€’ Student Art Exhibit April 24 β€’ Ursinus College Dance Company\u27s Spring Show β€’ Spanish Classes Popular Among UC Students β€’ Opinion: ESPN Debate Isn\u27t Really About Sports; Autism Awareness Month is a Learning Opportunity β€’ Hockey Not Netting Enough Attention β€’ Senior Spotlight: Wytch Rigger, Men\u27s Lacrosse β€’ Baseball Loses in 18 Inningshttps://digitalcommons.ursinus.edu/grizzlynews/1882/thumbnail.jp

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks

    Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations

    Get PDF
    An improved understanding of the neural correlates of altered arousal states is fundamental for precise brain state targeting in clinical settings. More specifically, electroencephalogram recordings are now increasingly being used to relate drug-specific oscillatory dynamics to clinically desired altered arousal states. Dexmedetomidine is an anesthetic adjunct typically administered in operating rooms and intensive care units to produce and maintain a sedative brain state. However, a high-density electroencephalogram characterization of the neural correlates of the dexmedetomidine-induced altered arousal state has not been previously accomplished. Therefore, we administered dexmedetomidine (1mcg/kg bolus over 10 minutes, followed by 0.7mcg/kg/hr over 50 minutes) and recorded high-density electroencephalogram signals in healthy volunteers, 18–36 years old (n = 8). We analyzed the data with multitaper spectral and global coherence methods. We found that dexmedetomidine was associated with increased slow-delta oscillations across the entire scalp, increased theta oscillations in occipital regions, increased spindle oscillations in frontal regions, and decreased beta oscillations across the entire scalp. The theta and spindle oscillations were globally coherent. During recovery from this state, these electroencephalogram signatures reverted towards baseline signatures. We report that dexmedetomidine-induced electroencephalogram signatures more closely approximate the human sleep onset process than previously appreciated. We suggest that these signatures may be targeted by real time visualization of the electroencephalogram or spectrogram in clinical settings. Additionally, these signatures may aid the development of control systems for principled neurophysiological based brain-state targeting

    Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia

    Get PDF
    Chagas disease is a protozoan infection caused by the parasite Trypanosoma cruzi. Chagas is prevalent throughout Central and South America, and it remains a chief concern in Bolivia. A movement that began in 1991 called the Southern Cone Initiative has been successful in reducing the incidence of Chagas disease in the Southern Cone countries of Argentina, Brazil, Chile, and Uruguay; but due to socio-economic and other factors, incidence remains high in Bolivia. The most important mode of transmission of T. cruzi to humans and other mammals is through feces of triatomine bugs. Thus, disease control and transmission prevention focus on elimination of triatomine vectors, and more specifically in Bolivia, it focuses on the elimination of Triatoma infestans. This study focuses on T. infestans in the Department of Chuquisaca, Bolivia. Ten highly variable microsatellite markers were used to analyze the population structure of insects collected in different towns. Statistical analyses show that T. infestans are highly structured, which means that they colonize on a small geographic scale. The results also suggest little active dispersal. These findings should be implemented during control efforts so that insecticide spraying focuses on geographic areas of colonization and re-colonization

    Functional Characterization of CLPTM1L as a Lung Cancer Risk Candidate Gene in the 5p15.33 Locus

    Get PDF
    Cleft Lip and Palate Transmembrane Protein 1-Like (CLPTM1L), resides in a region of chromosome 5 for which copy number gain has been found to be the most frequent genetic event in the early stages of non-small cell lung cancer (NSCLC). This locus has been found by multiple genome wide association studies to be associated with lung cancer in both smokers and non-smokers. CLPTM1L has been identified as an overexpressed protein in human ovarian tumor cell lines that are resistant to cisplatin, which is the only insight thus far into the function of CLPTM1L. Here we find CLPTM1L expression to be increased in lung adenocarcinomas compared to matched normal lung tissues and in lung tumor cell lines by mechanisms not exclusive to copy number gain. Upon loss of CLPTM1L accumulation in lung tumor cells, cisplatin and camptothecin induced apoptosis were increased in direct proportion to the level of CLPTM1L knockdown. Bcl-xL accumulation was significantly decreased upon loss of CLPTM1L. Expression of exogenous Bcl-xL abolished sensitization to apoptotic killing with CLPTM1L knockdown. These results demonstrate that CLPTM1L, an overexpressed protein in lung tumor cells, protects from genotoxic stress induced apoptosis through regulation of Bcl-xL. Thus, this study implicates anti-apoptotic CLPTM1L function as a potential mechanism of susceptibility to lung tumorigenesis and resistance to chemotherapy

    The CXCL16-CXCR6 axis in glioblastoma modulates T-cell activity in a spatiotemporal context

    Get PDF
    IntroductionGlioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes.MethodsOur study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues.ResultsOur data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression.DiscussionThe dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events
    • …
    corecore