1,267 research outputs found
Triggered qutrits for Quantum Communication protocols
A general protocol in Quantum Information and Communication relies in the
ability of producing, transmitting and reconstructing, in general, qunits. In
this letter we show for the first time the experimental implementation of these
three basic steps on a pure state in a three dimensional space, by means of the
orbital angular momentum of the photons. The reconstruction of the qutrit is
performed with tomographic techniques and a Maximum-Likelihood estimation
method. In this way we also demonstrate that we can perform any transformation
in the three dimensional space
Experimental Quantum Cryptography with Qutrits
We produce two identical keys using, for the first time, entangled trinary
quantum systems (qutrits) for quantum key distribution. The advantage of
qutrits over the normally used binary quantum systems is an increased coding
density and a higher security margin. The qutrits are encoded into the orbital
angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal
index l +1, 0 and -1, respectively. The orbital angular momentum is controlled
with phase holograms. In an Ekert-type protocol the violation of a
three-dimensional Bell inequality verifies the security of the generated keys.
A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to
the manuscrip
Curvature condensation and bifurcation in an elastic shell
We study the formation and evolution of localized geometrical defects in an
indented cylindrical elastic shell using a combination of experiment and
numerical simulation. We find that as a symmetric localized indentation on a
semi-cylindrical shell increases, there is a transition from a global mode of
deformation to a localized one which leads to the condensation of curvature
along a symmetric parabolic crease. This process introduces a soft mode in the
system, converting a load-bearing structure into a hinged, kinematic mechanism.
Further indentation leads to twinning wherein the parabolic crease bifurcates
into two creases that move apart on either side of the line of symmetry. A
qualitative theory captures the main features of the phenomena and leads to
sharper questions about the nucleation of these defects.Comment: 4 pages, 5 figures, submitted to Physical Review Letter
The paradoxical effects of somatostatin on the bioactivity and production of cytotoxins derived from human peripheral blood mononuclear cells.
Somatostatin (SMS), a naturally occurring peptide is known to inhibit the production of certain protein molecules and to diminish the ability of peripheral blood mononuclear cells to proliferate. We tested the effects of three forms of SMS on the bioactivity of both lymphotoxin (LT) and tumour necrosis factor (TNF). We also tested the effects of these agents on production of cytotoxins by peripheral blood mononuclear cells. We found the 28 amino acid form of SMS significantly enhanced the bioactivity of both LT and TNF (10(-9) M concentration) when tested in mouse L cells. The 14 amino acid form of SMS enhanced LT (10(-9) M concentration) activity but not TNF activity. The first 14 amino acid form of SMS-28 (amino terminal) did not affect bioactivity of the cytotoxin. In contrast, the naturally occurring 14 amino acid form of SMS (10(-8) M concentration) significantly diminished production of cytotoxin by human peripheral blood mononuclear cells. Cytotoxin produced by the latter was shown to be a combination of both LT and TNF. Similarly after SMS exposure, the cytotoxin produced remained a mixture of LT and TNF in roughly similar proportions. It thus appears that certain forms of SMS can enhance the bioactivity of cytotoxins, but at the same time decrease the production of these cytotoxins
Arrays of waveguide-coupled optical cavities that interact strongly with atoms
We describe a realistic scheme for coupling atoms or other quantum emitters
with an array of coupled optical cavities. We consider open Fabry-Perot
microcavities coupled to the emitters. Our central innovation is to connect the
microcavities to waveguide resonators, which are in turn evanescently coupled
to each other on a photonic chip to form a coupled cavity chain. In this paper,
we describe the components, their technical limitations and the factors that
need to be determined experimentally. This provides the basis for a detailed
theoretical analysis of two possible experiments to realize quantum squeezing
and controlled quantum dynamics. We close with an outline of more advanced
applications.Comment: 30 pages, 8 figures. Submitted to New Journal of Physic
Entanglement by linear SU(2) transformations: generation and evolution of quantum vortex states
We consider the evolution of a two-mode system of bosons under the action of
a Hamiltonian that generates linear SU(2) transformations. The Hamiltonian is
generic in that it represents a host of entanglement mechanisms, which can thus
be treated in a unified way. We start by solving the quantum dynamics
analytically when the system is initially in a Fock state. We show how the two
modes get entangled by evolution to produce a coherent superposition of vortex
states in general, and a single vortex state under certain conditions. The
degree of entanglement between the modes is measured by finding the explicit
analytical dependence of the Von Neumann entropy on the system parameters. The
reduced state of each mode is analyzed by means of its correlation function and
spatial coherence function. Remarkably, our analysis is shown to be equally as
valid for a variety of initial states that can be prepared from a two-mode Fock
state via a unitary transformation and for which the results can be obtained by
mere inspection of the corresponding results for an initial Fock state. As an
example, we consider a quantum vortex as the initial state and also find
conditions for its revival and charge conjugation. While studying the evolution
of the initial vortex state, we have encountered and explained an interesting
situation in which the entropy of the system does not evolve whereas its wave
function does. Although the modal concept has been used throughout the paper,
it is important to note that the theory is equally applicable for a
two-particle system in which each particle is represented by its bosonic
creation and annihilation operators.Comment: 6 figure
Vibration-enhanced quantum transport
In this paper, we study the role of collective vibrational motion in the
phenomenon of electronic energy transfer (EET) along a chain of coupled
electronic dipoles with varying excitation frequencies. Previous experimental
work on EET in conjugated polymer samples has suggested that the common
structural framework of the macromolecule introduces correlations in the energy
gap fluctuations which cause coherent EET. Inspired by these results, we
present a simple model in which a driven nanomechanical resonator mode
modulates the excitation energy of coupled quantum dots and find that this can
indeed lead to an enhancement in the transport of excitations across the
quantum network. Disorder of the on-site energies is a key requirement for this
to occur. We also show that in this solid state system phase information is
partially retained in the transfer process, as experimentally demonstrated in
conjugated polymer samples. Consequently, this mechanism of vibration enhanced
quantum transport might find applications in quantum information transfer of
qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final
published versio
Probing quantum coherence in qubit arrays
We discuss how the observation of population localization effects in
periodically driven systems can be used to quantify the presence of quantum
coherence in interacting qubit arrays. Essential for our proposal is the fact
that these localization effects persist beyond tight-binding Hamiltonian
models. This result is of special practical relevance in those situations where
direct system probing using tomographic schemes becomes infeasible beyond a
very small number of qubits. As a proof of principle, we study analytically a
Hamiltonian system consisting of a chain of superconducting flux qubits under
the effect of a periodic driving. We provide extensive numerical support of our
results in the simple case of a two-qubits chain. For this system we also study
the robustness of the scheme against different types of noise and disorder. We
show that localization effects underpinned by quantum coherent interactions
should be observable within realistic parameter regimes in chains with a larger
number o
Measuring vertebrate telomeres: applications and limitations
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic
chromosomes that function in stabilizing chromosomal end integrity.
In vivo
studies of
somatic tissue of mammals and birds have shown a correlation between telomere length and
organismal age within species, and correlations between telomere shortening rate and
lifespan among species. This result presents the tantalizing possibility that telomere length
could be used to provide much needed information on age, ageing and survival in natural
populations where longitudinal studies are lacking. Here we review methods available for
measuring telomere length and discuss the potential uses and limitations of telomeres as
age and ageing estimators in the fields of vertebrate ecology, evolution and conservation
- …