25 research outputs found

    Resilience of Green Sea Urchin (Strongylocentrotus droebachiensis) Populations Following Fishing Mortality: Marine Protected Areas, Alternate Stable States, and Larval Ecology

    Get PDF
    The green sea urchin Strongylocentrotus droebachiensis has been aggressively fished in Maine since 1986 resulting in severe population declines throughout portions of the state. This research used Marine Protected Areas (MPAs) to evaluate the potential for recovery in depleted sea urchin populations. It was necessary to not only look at the direct impacts of the MPAs, but also at larval transport / supply and community interactions to gain a better understanding of the system. We found that MPAs in the Gulf of ~a!ne were of varied utility to restoring depleted sea urchin populations depending on location and community structure. MPAs established in coralline communities appeared to protect sea urchin populations from further declines and may have allowed some slow recovery. However, closures in areas that have undergone a community shift from coralline communities to fleshy macroalgal beds did not provide protection for the remaining sea urchins or appropriate habitat for repopulation. Additionally, this macroalgal state appears stable over time so the potential for sea urchin recovery will probably remain low. This study also determined the point at which sea urchins could no longer control macroalgal production and allowed the growth of fleshy macroalgal beds. This ecologically effective biomass declined exponentially with water depth and was inversely proportional to latitude. These patterns were probably caused by the factors that affect productivity (e.g. light, nutrients) and grazing rates (e.g. temperature, water movement). Mechanisms driving sea urchin settlement were also examined. Competent echinoplutei were found higher in the water and advected onshore when northeast wind events created oceanographic downwelling conditions. Newly metamorphosed sea urchins were also found in the water column, suggesting that contact with the substrate is not needed to initiate metamorphosis. Sea urchin settlement was greatest in coralline communities with high micro-complexity and lowest in macroalgal beds. Survival through the summer, however, only averaged 50% regardless of community type or habitat micro-complexity. Lastly, this study identified adult sea urchins as a potential consumer of juvenile sea urchins, which may account for some of the relatively high mortality seen in sea urchin-dominated coralline communitie

    Fourth Annual Report: 2007 Pre-Construction Eelgrass Monitoring and Propagation for King County Outfall Mitigation

    Get PDF
    King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate these impacts and prepare for post-construction restoration, King County began implementing a multiyear eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements related to eelgrass are (a) pre-construction monitoring, i.e., documenting initial eelgrass conditions and degree of fluctuation over 5 years prior to construction, (b) eelgrass transplanting, including harvesting, offsite propagating, and stockpiling of local plants for post-construction planting, and (c) post-construction planting and subsequent monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2007 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) for King County. Activities included continued propagation of eelgrass shoots at the PNNL Marine Sciences Laboratory (MSL) in Sequim, Washington, and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. In addition, 490 eelgrass shoots were also harvested from the Marine Outfall Corridor in July 2007 to supplement the plants in the propagation tank at the MSL, bringing the total number of shoots to 1464. Eelgrass densities were monitored in four of five experimental harvest plots established in the Marine Outfall Corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. A net increase in eelgrass density from 2004 post-harvest to 2007 was observed in all plots, despite density decreases observed in 2006 in all plots and at most harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period was not related to initial 2004 harvest rate. Harvest rates of neighboring subplots did not appear to affect subplot eelgrass density (Woodruff et al. 2007). Three years post-harvest, eelgrass shoot densities were not significantly different from pre-harvest shoot densities at any harvest level. Additional plans are being discussed with King County to harvest all eelgrass from the construction corridor and hold in the propagation tanks at the MSL for post-construction planting. Under this plan, plants that would have been lost to construction will be held offsite until construction is completed. This strategy reduces and possibly eliminates the need to harvest eelgrass from donor beds located south of the construction area, allowing them to remain undisturbed. However, if eelgrass is harvested from donor beds, the monitoring of eelgrass growth at different harvest rates should help determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds

    Is local adaptation a factor in planning eelgrass restoration? Initial assessment of responses to temperature by eelgrass growing across a stressor gradient

    Get PDF
    Large-scale eelgrass restoration in an environment as complex as the Salish Sea requires estimating the effects of a wide range of environmental conditions (e.g. temperature, salinity, turbidity) on the effectiveness of restoration actions in different locations. We have developed a spatial model of eelgrass growth in response to environmental drivers, based on physiological data collected in Sequim Bay, WA, to aid in identifying restoration sites. However, field tests suggest that the model underestimates the capability of eelgrass to grow in conditions more stressful than Sequim Bay. A critical uncertainty is the extent of localized genotypic and/or phenotypic adaptations by eelgrass to high temperature and light limitation, which would affect our ability to predict restoration success over large scales with a single model. We have conducted an initial set of experiments to explore the physiological response of eelgrass collected from multiple locations across a temperature stress gradient. We collected eelgrass samples from two high-stress locations (South Sound and Hood Canal), and one low-stress location (Sequim Bay) and measured photosynthesis and respiration rates of cleaned, healthy leaf sections via instantaneous oxygen flux in light and dark bottles across a range of temperatures. The samples had notable differences in morphology and epiphytes. We found that respiration and photosynthesis did not differ between sites across the temperature treatments. Counter to expectations, eelgrass from more stressful locations had higher respiration rates, though the difference was not statistically significant. We observed significantly higher gross and net productivity at 25° C for eelgrass from Hood Canal. The results suggest that eelgrass populations throughout Puget Sound may not be as differentially adapted to temperature as we expected, despite discrepancies between modeling and field observations. We hope to extend this study with additional data collection, including moderate- to long-term common garden growth experiments for multiple stressors

    Eelgrass (Zostera marina) restoration in Puget Sound: restoration tools, successes and challenges

    Get PDF
    Eelgrass (Zostera marina) is one of 25 Vital Signs to track the health of Puget Sound and restoration of this critical nearshore habitat is part of the overall regional recovery strategy. Eelgrass restoration will provide a multitude of benefits, ranging from habitat for species to ameliorating the effects of climate change. Since 2013, the Washington State Department of Natural Resources has led regional evaluation of potential eelgrass restoration sites and transplanting in Washington State. Through collaborations we have developed and tested strategies to enhance transplant success and restore natural processes. We developed an eelgrass transplant suitability model to identify potential restoration sites using key variables essential for seagrass production and long-term resilience in a changing environment. Eelgrass was planted at five sites for initial model verification with an additional 81 test sites planted between 2013 and 2017 to identify areas suitable for large scale restoration. Eelgrass test transplant results varied and 15 sites with the highest success were selected for large-scale transplantation. A comparison of standard transplant methods was performed and preliminary results suggest that proper method selection plays an important role in transplant success. Long-term monitoring is scheduled with an emphasis on the success of specific donor stocks, the recovery of donor sites, and the effect seagrass restoration has on water chemistry. The restoration process has endured challenges that ranged from permitting issues to anthropogenic and environmental stressors. However, issue specific solutions and adaptive management allowed the restoration process to progress and contribute valuable information towards strategies to recover this valuable habitat in the region

    Eelgrass donor sites: potentially overlooked impacts of restoration in Puget Sound

    Get PDF
    Eelgrass (Zostera marina) is an important habitat in the Salish Sea and restoration efforts are being undertaken around the region to increase eelgrass abundance and resilience. Eelgrass restoration is typically performed by transplanting whole shoots or dispersing viable seeds collected from reproductive shoots to a site. Most of the restoration efforts in the Pacific Northwest utilize whole shoots harvested from donor meadows and transplanted into restoration areas, but little work has been done to look at the impacts of the harvest on the donor stock. In response to the lack of existing data for Puget Sound, Washington Department of Natural Resources and Pacific Northwest National Laboratory’s Marine Sciences Laboratory conducted a controlled harvest experiment in two regions of the Salish Sea at sites associated with ongoing restoration activities. These meadows were harvested under different pressure (i.e., different percentage of plants taken from 0 to 50%) using traditional harvesting techniques. The meadows were then monitored for two years for changes in density. The results indicated that the eelgrass meadows were surprisingly resilient to all levels of harvest under ideal conditions and in small harvest areas. Interpretation and implications of these results will be discussed, as well as potential considerations for choosing potential donor sites for future restoration efforts

    Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

    Get PDF
    This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach)
    corecore