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The green sea urchin Strongylocentrotus droebachiensis has been aggressively 

fished in Maine since 1986 resulting in severe population declines throughout portions of 

the state. This research used Marine Protected Areas (MPAs) to evaluate the potential for 

recovery in depleted sea urchin populations. It was necessary to not only look at the 

direct impacts of the MPAs, but also at larval transport / supply and community 

interactions to gain a better understanding of the system. 

We found that MPAs in the Gulf of ~a!ne were of varied utility to restoring 

depleted sea urchin populations depending on location and community structure. MPAs 

established in coralline communities appeared to protect sea urchin populations from 

further declines and may have allowed some slow recovery. However, closures in areas 

that have undergone a community shift from coralline communities to fleshy macroalgal 

beds did not provide protection for the remaining sea urchins or appropriate habitat for 



repopulation. Additionally, this macroalgal state appears stable over time so the potential 

for sea urchin recovery will probably remain low. 

This study also determined the point at which sea urchins could no longer control 

macroalgal production and allowed the growth of fleshy macroalgal beds. This 

ecologically effective biomass declined exponentially with water depth and was inversely 

proportional to latitude. These patterns were probably caused by the factors that affect 

productivity (e.g. light, nutrients) and grazing rates (e.g. temperature, water movement). 

Mechanisms driving sea urchin settlement were also examined. Competent 

echinoplutei were found higher in the water and advected onshore when northeast wind 

events created oceanographic downwelling conditions. Newly metamorphosed sea 

urchins were also found in the water column, suggesting that contact with the substrate is 

not needed to initiate metamorphosis. Sea urchin settlement was greatest in coralline 

communities with high micro-complexity and lowest in macroalgal beds. Survival 

through the summer, however, only averaged 50% regardless of community type or 

habitat micro-complexity. Lastly, this study identified adult sea urchins as a potential 

consumer of juvenile sea urchins, which may account for some of the relatively high 

mortality seen in sea urchin-dominated coralline communities 
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Chapter 1. Ecosystem shifts and the effectiveness of marine protected areas: 

a cautionary tale from the Maine sea urchin fishery. 

Abstract 

Marine protected areas (MPAs) are commonly considered to be a viable means of 

fisheries management, in part because they often result in increased population density 

and body size of harvested species. When MPAs do not work, the things most commonly 

blamed for their failure are poor site selection, pollution, inadequate enforcement, Allee 

effects, and unexpected trophic cascades after closure. We report that dramatic changes 

to the ecosystem occurring before MPA closure can also influence the results. In Maine, 

the green sea urchin Strongylocentrotus droebachiensis (Echinodermata, Echinoidea) is 

the dominant coastal benth~c herbivore which has been widely depletcd due to 

overfishing. As a result, benthic communities have moved ta alternate stable equilibria 

from crustose coralline communities to fleshy macroalgal beds. In 1999, six small areas 

(< 0.15 km2) along the coast were closed to sea urchin fishing to gauge resilience in sea 

urchin populations. Those areas that were grazed by sea urchins and dominated by 

coralline algae prior to closure appear to protect resident sea urchin populations from 

further degradation; sea urchin populations are also exhibiting signs of recovery. Areas 

dominated by fleshy macroalgal beds prior to closure, however, have shown no 

indications of sea urchin recovery or macroalgal reductions. We think that these areas 

represent an alternate stable state for the region, and that creating MPAs has little (or a 

very slow) effect on reversing the severe changes in the ecosystem. Managers need to be 



aware of potential non-linear responses in their systems and take actions before long- 

lasting or irreversible changes occur. 

Introduction 

Natural fisheries are declining worldwide; sixty percent of the world's fisheries 

are fully or over exploited, and another six percent are depleted (total loss of the 

population) according to the FA0 (1998). More recent data suggest global landings have 

been declining since 1988 (Watson and Pauly 2001). The questioning of traditional 

fisheries management has led to requests for alternative management methods (e.g. 

Botsford et al. 1997, Lubchenco et al. 2003). Marine protected areas (MPAs), where 

some or all fishing is prohibited, are increasingly becoming a mechanism com~nonly 

suggestioned to improve fisheries management. 

The scientific community (see Ecological Applications 13(1) Supp!ement for 

example), environmental groups (e.g. Gel1 and Roberts 2002), non-government 

commissions (e.g. Palumbi 2002), and government councilors (National Research 

Council 2001) have been suggesting the use of MPAs for a number of reasons. They can 

protect critical habitat, provide a spatial refuge for exploited fish, conserve biodiversity, 

and facilitate tourism (for reviews see Gubbay 1995, Allison et al. 1998). These areas 

may provide new recruits to populations and serve as potential experimental plots for 

fisheries and ecological research (Dugan and Davis 1993b). While no one feels that 

MPAs alone can solve world fisheries problems, they can be a useful addition to a 

management plan (Dugan and Davis 1993a, Allison et al. 1998) and may help mitigate 



some of the uncertainty in more traditional management options (Hall 1998, Lauck et al. 

1998, Allison et al. 2003). 

Numerous studies have validated the potential effectiveness of MPAs. Most 

MPAs have demonstrated increases in biomass, abundances, and densities of species (for 

reviews see Dugan and Davis 1993a, Palumbi 2001, Gell and Roberts 2002, Halpern 

2003) and changes usually occur very quickly (Halpern and Warner 2002). Perhaps 

more importantly for fisheries management, there are studies that suggest MPAs can 

export target species into the surrounding fished areas (Russ and Alcala 1996, 

McClanahan and Mangi 2000, Roberts et al. 2001). 

Not all MPAs function as designed, however. Kelleher et al. (1995) reported that 

only 3 1% of 1,306 MPAs surveyed worldwide met all their management objectives. 

They further reported that 29% failed to meet any of their management goals. hlPA 

failure was usually attributed to improper siting of the reserve, Allee effects, poor 

enforcement, or unexpected trophic cascades once the MPA was established (for reviews 

see Palumbi 2001, Gell and Roberts 2002, Palumbi 2002). Jameson et al. (2002) recently 

stated that MPAs cannot be effective as long as managers fail to control stressors from 

outside the MPA (e.g. pollution), particularly from atmospheric, terrestrial, or oceanic 

sources. 

Here we report on six areas in the Gulf of Maine closed to fishing of the green sea 

urchin, Strongylocentrotus droebachiensis (Muller), to determine its effects on 

abundances of this heavily exploited species. Our results varied, depending upon how 

much the ecosystem organization had changed prior LO closure. We underscore the 

importance of understanding the ecology and successional processes within an ecosystem 



when trying to develop management plans. Directional changes in a community prior to 

closure may have resulted in a stable structure and confound expected rates of recovery. 

Materials and Methods 

Study Organisms 

S. droebachiensis is an important component of the coastal Gulf of Maine benthos 

(for review see Scheibling and Hatcher 2001). Economically, sea urchins are harvested 

for their gonads which are exported to Japan (Chenoweth 1994, Wilen and Wessells 

1997). For almost a decade, sea urchins had been the second largest wild fishery in the 

State of Maine, second only to lobsters (DMR 1998). However, after rapid increases in 

the mid 1 9 8 0 ~ ~  sea urchin landings peaked in 1993 and have declined ever since (DMR 

2000). 

Ecologica~ly, the green sea urchin is the primary benthic herbivore in the Gulf of * 

Maine (Steneck and Dethier 1994). Like many urchins worldwide (Lawrence 1975, 

Harrold and Pearse 1987, Pinnegar et al. 2000, Steneck et al. 2003), its population 

dynamics can control benthic community structure on hard substrates (Breen and Mann 

1976, Lang and Mann 1976, Lawrence and Sammarco 1982, Scheibling 1986). When 

urchins are abundant, sea urchin grazing usually denudes the benthos of erect fleshy 

macroalgae, leaving behind a crustose coralline community (often called a "barrens"). 

Recently, however, fishing has reduced sea urchin populations in many areas to the point 

where their grazing can no longer control algal growth and high biomass fleshy 

macroalgal beds form (Steneck 1997, McNaught 1999). These algal beds provide a 



characteristic canopy for a much different community that can be beneficial for many 

different taxa (Steneck et al. 2003). 

Algal beds in the Gulf of Maine can be complex but are easily broken down into 

assemblages having different canopy heights. The base consists of encrusting red algae 

such as Lithothamnion spp., Phymatolithon laevigatum, Clathomorphum circumscriptum, 

Peyssonnelia spp., and Hildenbrandia rubra. This assemblage is often characteristic of 

shallow productive environments with high sea urchin grazing. The small erect fleshy 

algae have a modest canopy height, usually less than 20 cm above the sea floor. These 

fleshy algae are composed of red, green, and brown algae. Common green algae include 

Ulva lactuca, Chaetomorpha spp. Enteromorpha spp., Spongomorpha spp.. and the non- 

indigenous Codium fragile. Red alga representative~ consist of Chondrus crispus, 

Phycodrus rubens, Ceramium rubrum, Bonnemaisonia hamtfera, Corallinu oficinalis, 

Palmaria palmatlz, Porphyra umbilicalis, and Polysiphonia spp. Brown alga examples 

include Desmizrestia spp., Chordariaflagellifomis, and sometimes Fucus spp. Kelp 

form the highest canopies and are usually dominated by Laminaria snccharina, L. 

digitata, Agarum clathratum, and Alaria esculenta. 

Maine Coastal Characteristics 

The coast of Maine is generally characterized by two regions: east and west of 

Penobscot Bay. These sections vary in their physical oceanographic characteristics, 

primarily driven by the complex current systems in the Gulf of Maine (see Fig. 1.1 for 

diagram and Beardsley et al. 1997 for a full description). Tidally mixed water from the 

Bay of Fundy is rapidly transported southwest along the eastern part of the state by 



Figure 1.1. Prevailing surface currents in the Gulf of Maine (adapted from Beardsley et 
al. 1997). Dashed arrows show the generalized surface current patterns and the darker 
solid line represents the stronger and faster Eastern Maine Coastal Current. The location 
of where this current turns offshore can vary along the coast at different times. The 
shaded areas indicate either large-scale sea urchin depletion and predominbnce of 
niacroalgal ... beds ( G )  or patchy sea urchin extirpation with a mosaic of co1nmuni;y types 
(iii:>. . . . Other coastal areas in Maine still have large urchin dominated coralline 
communities 



the Eastern Maine Coastal Current (EMCC). The EMCC moves along the coast until the 

Penobscot Bay area where much of the water mass moves offshore. Some of the EMCC 

continues along the shore as part of the Western Maine Coastal Current (WMCC). In 

general, the EMCC is faster moving, less stratified, richer in nutrients, and colder than the 

WMCC (Townsend et al. 1987, Pettigrew et al. 1998). 

There are also differences in the biotic communities these two sections of the 

coast (Fig. 1. I). Our observations and data indicate that most of the coastal hard 

substrate south of Casco Bay has shifted to fleshy macroalgal beds with greatly reduced 

populations of urchins remaining. The midcoast region, from Casco Bay to Penobscot 

Bay, has patchy urchin popluations and a mosaic of coralline communities and 

macroalgal beds exists. Both these areas were predominantly coralline communities 

before the 1990s (Steneck 1997), but intense localized sea urchin fishing has apparently 

forced a shift to the macroalgal stable point (McNaught 1999). Areas east of Penobscot 

Bay generally still have sea urchin populations and are characterized mostly by coralline 

communities. 

Study Sites 

Six sea urchin MPAs closed to sea urchin and scallop fishing were set up by the 

Maine Department of Marine Resources (DMR) in 1999 throughout the coast of Maine 

(Table 1.1, Fig. 1.2) at the request of the Sea Urchin Zone Council (SUZC). DMR and 

the SUZC designed these areas for research and thus they are much smaller (< 0.15 km2) 

than most MPAs around the world. The state, with the help of the SUZC, held public 

hearings near each regional area to obtain input and support from the local fishers before 



Table 1.1. Name, GPS coordinates, and years sampled for all the sites used in this study. 
Region is based on names given in Fig. 1. 

Marine Protected Areas and Associated Controls 
Region MPA 

Y ork 

York 

East Point 
N 43" 8.0' 
W 70' 37.2' 
Data collected 1996 - 2002 

Seal Head Point 
N 43" 7.2' 
W 70" 37.9' 
Data collected 1996 - 2002 

Pemaquid Pemaquid Point 
N 43" 50. I '  
W 69" 3 1 .O' 
Data collected 1996 - 2002 

Schoodic Schoodic Peninsula 
N 44" 20.4' 
W 68" 02.5' 
Data collected 1996 -- 2002 

Jonesport Outer Ram Island 
N 44" 29.5' 
W 65" 38.2' 
Data collected 1996 - 2002 

Jonesport Sea Duck Rock 
N 44' 29.1' 
W 67" 39.2' 
Data collected 1996 - 2002 

Control 

Cow Beach 
N 43" 8.4' 
W 70" 37.2' 
Data collected 1996 - 2002 

Stone's Rock 
N 43" 6.5' 
W 70" 38.4' 
Data collected 1996 - 2002 

Thrumcap Island 
N 43" 49.0' 
W 69" 33.1' 
Data collected 1996 - 2002 

Litde Moose Island 
N 44" 20.0' 
W 68" 02.6' 
Data collected 1998 - 2002 

Ram Island 
N 44" 29.5' 
W 67" 38.1' 
Data collected 1998 - 2002 

Little Drisko Island 
N 44" 29.0' 
W 67" 39.8' 
Data collected 1998 - 2002 

Other Sites Used For Regional Studies (data collected 1996-2002) 
Region Site 
Pemaquid Damariscove Island N 43" 46.0' W 69" 36.8' 

Pemaquid Fisherman's Island N 43" 47.6' W 69" 36.1' 

Mount Desert Island Long Island N 44" 6.2' W 68" 20.6' 

Mount Desert Island Great Duck Island N 44" 8.8' W 68" 15.1' 

Mount Desert Island Little Duck Island N 44" 10.4' W 68" 14.9' 

Mount Desert Island Baker Island N 44" 14.3' W 68" 12.4' 

Jonesport Brownie Ledges N 44" 29.1' W 67" 37.7' 

Jonesport Outer Sand Island N 44" 27.7' W 67" 40.7' 



emaquid 

Gulf of Maine 

York Pemaquid MDI & Schoodic Jonesport 

Figure 1.2. Regions and study sites located within the Gulf of Maine. Each marine 
protected area is designated by a star (+) and labeled by name. Each control site is 
marked with a "C". All other sites used for benthic surveys and urchin settlement are 
shown by the symbol 63. MDI abbreviates Mt. Desert Island. 



closing it. We positioned closed areas according to a standardized set of criteria 

including ledge substrate, southwest exposure, previous history of dense sea urchin 

populations currently overfished, the existence of previous scientific data, and high 

visibility for enforcement. We used at least two sites per region for replication wherever 

possible politically. Each MPA had 300 m of coastline and generally extended down to 

the 20 to 30 m isobath (which is usually beyond ledge substrate and urchin populations; J. 

Vavrinec pers. obs.). Buoys marked the boundaries and licensed sea urchin fishers were 

notified by mail with charts of the closed areas. Local marine patrol officers also 

provided marked charts for fishermen as an additional reminder. 

A control site open to fishing was established for each research MPA (Table 1.1, 

Fig. 1.1). Seven years of data were available in some cases for both the MPA and control 

for the comparisons (e.g. East Point, Seal Head, and Pemaquidj. The other MPAs 

(Schoodic Peninsula, Sea Duck Rock, and Outer Ram Island) did not have a control 

among the sites already being studied. For these, we established controls in 1999. 

Therefore, in these sites we have seven years of data in the MPA but only four years of 

data from the control (i.e. one before the MPA establishment, three after closure), a 

necessary limitation of the system with which we worked. All data collected prior to 

1998 were derived from McNaught (1999). 

In addition to the MPAs and their controls, we collected data at nine other sites 

(Table 1.1, Fig. 1.1). These sites allowed for some replication in the four larger regions 

(York, Pemaquid, Mount Desert Island, and Jonesport) studied by McNaught (1999). 

Schoodic is considered a separate region for the settlement data since it is not close to any 

other MPAs. 



Benthic Surveys 

All benthic surveys were conducted in late July or early August of each year. We 

did this firstly because the sea urchin fishing season is in the winter (approximately 

October to March) and summer sampling makes sure our data are collected after a full 

fishing season. Additionally, algal populations are generally fully established mid- 

summer after the winter dieback (J. Vavrinec pers. obs.) facilitating accurate estimates of 

cover and composition. Also we wanted to avoid possible seasonal variations in the sea 

urchin populations (Konar 2001). Lastly, the weather is usually calmer during the late 

summer with less surge underwater allowing divers to work more easily and efficiently 

on data collection. 

SCUBA divers conducted all benthic surveys at approximately 10 rn depth for 

consistency. We haphazardly threw 1 m2 quadrats on ledge substrate. At least 20 

quadrats were surveyed at each site to meet the minimum sample size. 

Sea urchin surveys were conducted using a telescoping quadrat design (after 

McNaught 1999). This design scales the quadrat dimensions with the size class (test 

diameter - TD) of the sea urchin so all sizes can be adequately sampled. The 1 m2 

quadrat is subdivided into four smaller divisions and we quantified a particular size range 

of urchins in each. Urchins 5 10 mm T D  were surveyed in a 1/64 m2 area, urchins > 10 

mm and 5 30 mm in a 1/16 m2 area, urchins > 30 rnrn and 5 50 mm in a 114 m2 area, 

urchins > 50 mm and 5 70 mm in a 9/32 m2 area, and urchins >70 mm were surveyed in 

the entire 1 m2 area. We counted all urchins in the appropriate quadrat and categorized 

them into 5 mm size bins. We took particular care when searching for small urchins 



since they could hide under algal and shell debris, in cracks, and within the branches of 

the Lithothamnion spp. We included only those urchins more than halfway in the 

appropriate quadrat. 

We also conducted algal surveys, estimating the percent-cover for each species 

within the same 1 m2 used for the sea urchin surveys. Algae that could not be identified 

to species were quantified by functional group (Steneck and Dethier 1994). We 

estimated the percent of the substrate covered by each the algal type (i.e. 100% each 

possible for crusts, small erect fleshy macroalgae, and kelp) for a potential total of 300% 

cover. 

Settlement Collectors 

To test for differences in settlement, we monitored sea urchin settlement at all 20 

study sites (Table 1.1, Fig. 1.2). We constructed the 9 x 20 cm collectors from artific~al 

turf (AstrotuffM Monsanto Corp., St. Louis, MO) attached to flat PVC plates for rigidity 

since other studies in the area successfully used this material (Harris et al. 1994, 

McNaught 1999). Four collectors were placed at each site at approximately 10 m depth 

secured -3 cm above the substrate on a stainless steel bolt cemented to ledge substrate 

with an underwater epoxy (Kopcoat Splash Zone Compound A-788, Carboline Co., St. 

Louis, MO). We deployed the collectors in May and retrieved them in late July and early 

August to cover the reported settlement period for S. droebachiensis in the region (Harris 

et al. 1994, McNaught 1999, Chapt. 3). 

We followed the methods of McNaught (1999) for the collection and sorting of 

the settlement panels. SCUBA divers carefully placed the collectors in plastic bags, and 



then placed in a second bag back on the boat to prevent leaks. Samples were kept in a 

cooler with Ice packs until they could be sorted at the laboratory. Samples not sorted 

within 24 hours were frozen for later processing. At the laboratory, panels were soaked 

in a 7% MgCl solution (to relax the urchins) and thoroughly rinsed with 10 pm filtered 

seawater. The water was then filtered through at a 300 pm sieve and the remaining 

sample carefully sorted under a dissecting compound microscope for newly settled 

urchins. 

Data Analysis 

We processed the sea urchin survey data two different ways. First, because 

McNaught (1999) found sea urchin biomass was a good predictor of herbivory (and 

therefore community control), we converted numbers of urchins into biomass per quddrat 

(grams wet weight per m2). We multiplied the number of urchins per 1 m2 in each size 

class by the mean wet weight for that size class (calculated from the regression log 

biomass = 2.84 (log test diameter in cm)-0.23 [McNaught 19991) to estimate the biomass 

for each size bin. Total biomass was then summed for the quadrat, and all quadrats were 

averaged for a site average biomass. All data reported for 1994 and 1995 are means and 

SE from McNaught (1999) and were not used in statistical analyses. The data for the 

remaining years could not be transformed to meet the ANOVA assumption requiring 

homogeneity of variances (Sokal and Rohlf 1981), so Kruskal-Wallis tests were used to 

determine changes within sites. We also used apost hoc Multiple Comparison Test of 

Mean Ranks to compare different years within sites when there was a significant 



Kruskal-Wallis value. All statistical tests were performed via Statistica (Statsoft Inc., 

Tulsa, OK) or Sigmaplot (SPSS Inc., Chicago, IL) with an a=0.05. 

Second, sea urchin surveys were also used to calculate size frequency curves. 

Each sea urchin was assigned the mean TD in each size bin (e.g. an urchin classified as 

10 to 15 mm was labeled 12.5 mm) for the calculations and estimates were done per 1 

m2. The primary goal of the MPAs was to promote the recovery of sea urchin 

populations and variations in settlement can skew smaller size classes; therefore we 

focused primarily on urchins larger than legal size (51mm TD). We also calculated the 

average size of the legal urchins for each site during each year. However, we observed 

no significant changes or patterns in size frequency distributions with Student's t-tests 

and Kolmogorov-Smirnov tests and we therefore do not present those data. 

Algal data were similarly tested to compare results from different years within a 

site. We combined the values of the species from the small erect macroalgae and kelp to 

create one average of total percent cover of all fleshy macroalgae for a given year in 

different sites. The data did not meet the assumptions of ANOVA, so Kruskal-Wallis and 

(when F was significant) Multiple Comparison tests were performed on the datasets. 

Data from Sea Duck Rock and Little Drisko were also analyzed via ANOVA using a 

square root transformation [(a+0.5)"~]. We also calculated a regional average percent 

cover by averaging all site (MPAs, controls, and regional sites) values within a region for 

each year. The Schoodic Region only had two sites, but the other four regions each had 

four sites to average. 

The most effective way to evaluate the effects of MPA implementation is through 

a BACI (Before-After-Control-Impact) design (Stewart-Oaten et al. 1986). This design 



takes the difference in value (e.g. sea urchin biomass) between the MPA and its 

associated control site for each year. It is not necessarily important that difference be 

zero since the change in the difference over time is tested. The differences are then 

grouped into before and after closure categories and tested for similarity with a Student's 

t-test (Stewart-Oaten et al. 1986). We performed these BACI tests on all the MPA 

datasets for years with data from both sites (MPA values - control values) and, while we 

did not find significant differences, many of the patterns suggest trends and are therefore 

included in the results. 

Lastly, we calculated regional averages for sea urchin settlement. The number of 

urchins per plate was averaged for each site. We then calculated the mean of all the site 

averages in each region for an annual regional average. Regional averages in Jonesport 

were not calculated with exact same sites through all the years. Prior to 1999, collectors 

were placed at Outer Sand Island and the Brownie Ledges (in addition to the proposed 

MPAs). Due to sea urchin populations and macroalgal cover differences these two sites 

were not appropriate for controls and new sites were chosen (Little Drisko Island and 

Ram Island). Due to logistics, we moved all data collection including settlement 

monitoring to these new sites. We were concerned that this change affected the 

settlement numbers, so we placed collectors again at Outer Sand Island in 2001 for 

comparison and obtained similar results to the new control sites. 



Results 

Regional Sea Urchin Settlement 

Averages in regional settlement differed greatly between regions, with highest 

numbers consistently recorded in the southwestern parts of the state and the lowest in the 

northeastern sections (Fig. 1.3). Settlement within regions was variable over time. With 

the possible exception of Jonesport, there did not appear to be any trends in continued 

decreases within a region over the duration of the study. Settlement in York and 

Pemaquid decreased until 1999, but increased until 2001 (which had settlement numbers 

similar to 1997). In 2002 settlement again decreased. Schoodic and the Mt. Desert 

Island region have remained relatively constant over time except for a small decrease in 

1998. Jonesport never received much settlement, the highest oniy being 54 settlers m-' 

(in 1997), and no settlers have been in our collectors in the last four years. 

Regional Macroalgal Percent Cover 

We also determined the average total percent cover of macroalgae for each of the 

regions over time (Fig. 1.4). These numbers were usually a mixture of estimates from 

coralline communities and macroalgal beds as each site can be different, but the average 

can give an idea of overall trends in the different regions. The shift from coralline 

communities to fleshy macroalgal beds appears to be moving from west to east along the 

coast. By 1996, all York sites had converted to algal beds but all the other regions were 

largely coralline communities. Over the next couple of years, the Pemaquid Region 



York Pemaquid MDI Schoodic Jonesport 

Region 

Figure 1.3. Average annual number of urchin settlers per m2 SE) 1996 through 2002. 
Regions are based on those shown in Fig. 1. Years without settlement data are 
designated with 'nd' and '0' indicates no settlement was observed for that year. 
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Figure 1.4. Average regional percent cover of fleshy macraalgae over time for the York, 
Pemaquid, Mt. Desert, and Schoodic regions. Error bars are + 1SE 



exhibited more macroalgae, and in the last three years even sites around MDI and 

Schoodic have started to increase in macroalgal cover. 

MPA Case Studies 

East Point, York 

At the initiation of this study, the East Point MPA was as a macroalgal bed with 

very low sea urchin biomass and has remained that way for seven years (Fig. 1.5). Sea 

urchin populations have been functionally absent during the whole time, with the highest 

average biomass recorded being 2.4 g m-2 in 1996. No urchins were found in 1997 or 

1999-2002. Macroalgal cover remained over 100% for the entire time between 1995 and 

2002 and actually increased in the last two years (Figure 1 S ,  Table 1.2). 

The Cow Beach control showed similar trends to the MPA. While early data 

from McNaught (1999) indicated the site went through a phase shift between 1995 and 

1996, the area has remained an algal bed since 1996. Again, sea urchin biomass over 

time remained low (no urchins were found in the last two years) and not changed 

according to the Multiple Comparison of Mean Ranks test (Fig. 1.5C) and differences 

were on the order of tens of g m-2. Algae varied over time (Table 1.2) but patterns 

showed similar to the East Point MPA (Fig. 1.5A). 

The BACI differences show slightly different results. The differences in sea 

urchin biomass were variable within a small range but leveled out to zero as no urchins 

were seen in the sites (Fig. 1.5D). There were not significant differences in the annual 



Figure 1.5. Data for the East Point MPA and Cow Beach control site in York, Maine. 
A) Average percent cover of all fleshy macroalgae at both sites over time. The total 
possible percent cover can be 200% since we quantified two levels of macroalgae (see 
text). Different letters by the data point indicate statistical difference in MPA data as 
determined by a Multiple Comparison of Mean Ranks test (a=0.05), numbers are used for 
the control site. No statistical notations are used where the test found no difference. 
B) Difference in the percent cover of fleshy macroalgae between the two sites (MPA - 
control site) for each year. 
C) Average urchin biomass in g m-2 for both sites over time. Statistical notations are the 
same as A. 
D) Difference in the urchin biomass between the two sites as is B. 
All error bars are + 1 standard error. All data before 1998 is from McNaught (1999). 



Table 1.2. Results of Kruskal-Wallis tests on average sea urchin biomass and percent 
cover of fleshy macroalgae for all sites studied. Site names correspond with those in 
Table 1 and Fig. 1. Categories include the site name, classification of study site, years 
studied, and the measurements taken. 

Site - 
East Point 

Cow Beach 

Seal Head Point 

Stone's Rock 

Pemaquid Point 

Thrumcap 

Schnodic Peninsula 

Little Moose Island 

Sea Duck Rock 

Little Drisko 

Outer Ram Island 

Ram Island 

Class. Years - - 
MPA '96-'02 

Control '96-'02 

MPA '96- '02 

Control '96-'02 

MPA '96-'02 

Control '96-'02 

MPA '96-'02 

Control '98-'02 

MPA '96-'02 

Control '98-'02 

MPA '96-'02 

Control '98-'02 

Measure 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urchins 
algae 

urc hins 
algae 

urc hins 

p value 

p > 0.05 
p < 0.000 1 *** 

p > 0.05 
p < 0.0001*** 

p = 0.02* 
p < 0.0001*** 

p = 0.0001*** 
p < 0.0001*** 

p = 0.0016** 
p = 0.039* 

p < 0.000 I *** 

p <: 0.~001*** 

p < 0.0001*-* 
p < O.OOll* 

p = 0.092 
p = 0.004* 

p < 0.79 
p < 0.0001*** 

p = 0.003* 
p < 0.0001*** 

p = 0.003* 
p = 0.052 

p = 0.423 
algae 126 p=O.1 



urchin biomass difference in the BACI t-test (df=5, p=O. 178). The algae, however, did 

show differences before and after closure (df=5, p=0.014) because the control site came 

to have a slightly greater percent cover (Fig. 1.5B). These results may be misleading 

since the range is not very great and the difference appears to be converging on zero. 

Seal Head Point, York 

Like the East Point MPA, Seal Head Point MPA has been a macroalgal bed since 

1994 (Fig. 1.6). Since 1996, sea urchin biomass has never been above a mean of 11 g m-2 

and has been zero for the last two years. Macroalgal cover has changed over time and 

generally increased over the last couple of years (Table 1.2). 

The control site by Stones Rock, also a macroalgal bed for eight years, exhibited 

the same sort of stability (Fig. 1.6). Sea urchin biomass remained below 5 g m-*, and no 

urchins were found in four of the last five sampling years (1999 data were not available). 

Similar to Seal Head Point, macroalgal cover increased slightly in the last few years but 

has always been 90% or greater (Table 1.2). 

Given the small fluctuations within the sites, there was little change in the 

differences between sites (Figs. 1.6B and D). Differences in sea urchin biomass between 

the sites are very close to zero and differences in macroalgal cover show no pattern. 

Neither show a BACI difference before and after closure (Student's t-test, df=5, p=.052 

for biomass and 0.48 for macroalgal cover). 
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Figure 1.6. Data for the Seal Head Point MPA and Stone's Rock control site in York, 
Maine. Legend is the same as Fig. 1.5. 

Pemaquid Point 

Unlike the York sites, both the Pemaquid Point MPA and its control started as 

coralline communities. Biomass in the MPA remained relatively stable from 1996 

through 2002 although there were some significant changes detected (Fig. 1.7, Table 1.2). 

A decrease in biomass did occur during the first year of MPA closure which we believe is 

due to a patchy, statewide sea urchin mortality event observed that year (see discussion) 

and not due to the effects of the closure. After the decrease in 2000, there was a small, 

but non-significant trend of increasing biomass (Fig. 1.7C). Percent cover of macroalgae 

showed very little change with almost no macroalgal cover over the duration of the study. 



Figure 1.7. Data for the Pemaquid Point MPA and Thrumcap Island control site over 
time. Legend is the same as Fig. 1.5. 

Results of a Kruskal-Wallis test were significant (Table 1.2), which appears to be due to 

slight differences in the first year (Fig. 1.7A) and not necessarily associated with MPA 

closure. 

Thrumcap Island, the Pemaquid Point control site, exhibited a different response 

over the same time period (Fig. 1.7). Significant differences were seen in both the sea 

urchin biomass and macroalgal cover (Table 1.2). Sea urchin biomass varied before 1999 

and decrease by 75% soon after Pemaquid Point was closed (mean of 21 17.2 g m-2 in 

2000 to 492.8 g m-2 in 2002) such that biomass 2002 was not equal to that in any other 

year (Fig. 1.7C). As sea urchin biomass decreased, macroalgal cover increased from a 

mean of 1.3% in 2000 to 29.8% in 2001 and 42.9% in 2002, indicating the beginning of a 

shift to a macroalgal bed. 



Comparing the differences in biomass and macroalgae between sites showed 

similar trends (Figs. 1.7B and 1.7D). While there were no significant effects before and 

after closure (Student's t-test, df=5, p=0.44), differences in sea urchin biomass were 

starting to lean in favor of the MPA in the last year (i.e. the difference in biomass 

between the control and MPA was becoming less). While not significant (t-test, df=5, 

p=0.07), the difference in macroalgal cover suggests increasing macroalgal cover in the 

control after virtually no changes for five years (Fig. 1.7D). 

Schoodic Peninsula 

The Schoodic Peninsula MPA started as a coralline community but, by the end of 

the study, showed signs of a phase shift to a macroalgal bed (Fig. 1.8). Sea urchin 

biomass remained relatively stable since 1997, with an anomalously high mean in 1999 

accounting for all the significance differences (Table 1.2: also see Mult~ple Comparisons 

test results, Fig. 1.8C). Macroalgal cover, however, increased after closure (Table 1.2). 

In contrast to the MPA, the control at Little Moose Island remained a sea urchin 

dominated coralline community (Fig. 1.8). Sea urchin biomass was lower in 2002 (954.6 

g m-2 versus 1459.4 g m-2 in 1999) but the results were not significant (Table 1.2). The 

percent cover of macroalgae remained close to zero and the significant difference 

detected (Table 1.2) was probably an artifact of ranlung such low values, especially since 

the Multiple Comparison of Mean Ranks test did not distinguish any differences between 

years. 
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Figure 1.8. Data for the Schoodic Peninsula MPA and Little Moose Island control site. 
Legend is the same as Fig. 1.5. 

The differences between the control and MPA (urchin biomass and algal cover) 

suggest the MPA was not benefiting from !he closure (Figs. 1.8B and D). Again, the 

small sample size precluded any statistics. The initial large difference in the 1999 sea 

urchin biomass can probably be attributed to the unusually high sea urchin biomass seen 

in the MPA, but the changes in the algal community were noticed by the researchers. 

Sea Duck Rock, Jonesport 

Sea Duck Rock MPA was our eastern most macroalgal site, and like the others 

was relatively stable in sea urchin abundances (Fig. 1.9). Statistically there were no 

differences between years in sea urchin blomass (Table 1.2), although biomass did 
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Figure 1.9. Data for the Sea Duck Rock MPA and Little Drisko Island control site in 
Jonesport. Legend is the same as Fig. 1.5. 

fluctuate between 45 g m-2 in 1996 and 263 g m-2 in 1999. Macroalgal cover varied over 

time (Table 1.2) but was always above 60% cover and averaged around 100%. 

The Little Drisko control site also maintained a macroalgal state (Fig. 1.9), but 

there were changes in sea urchin biomass over time (Table 1.2). Sea urchin biomass 

decreased slightly over time, but started with a mean of only 182 g m-I in 1999. The 

macroalgal cover also fluctuated over time (Table 1.2, Fig. 1.9) but generally followed 

the same pattern as Sea Duck Rock. In fact, a 2-way ANOVA run on algal data (square 

root transformed) from 1999 - 2003 did not show a significant site effect (df=l, 

p=0.075), only significant year (df=3, p<0.0001) and interaction (df=3, p=0.018) effects. 

Differences between the MPA and control (Figs, 1.9B and D) indicate with no significant 



BACI differences in sea urchin biomass or algal cover (Student's t-test, df=3, p=0.91 and 

p=0.42 respectively). While differences are small, however, the differences in 

macroalgal cover appear to be indicating more cover in the control. 

Outer Ram Island, Jonesport 

Outer Ram Island MPA showed very little change over the course of this study 

(Fig. 1.10) and remained a coralline community. Sea urchin biomass increased slightly 

over the duration of the study (Table 1.2) but was not significantly different one year 

before closure (1999) and in 2002 (Fig. 1.10B). Macroalgal cover was virtually 

nonexistent and showed no significant differences (Table 1.2). 

The Ram Island control site coralline community also remained relatively 

constant. The sea urchin biomass did not have any significant differences over time 

(Table 1.2) but appeared to have decreased slightly since Outer Ram was closed (Fig. 

1 .lo). The percent cover of macroalgae was also very low throughout the study and did 

not significantly differ over time (Table 1.2). 

The BACI differences for both macroalgae and sea urchin biomass show very 

little change (Fig. 1.10). Student's t-tests could not be performed since there was only 

one "before" year, but the weak trends in the data suggest a slight improvement of the 

MPA in sea urchin biomass by the end of the study, although the changes are very small. 
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Figure 1.10. Data for the Outer Ram Island MPA and Ram Island control site in 
Jonesport. Legend is the same as Fig. 1.5. 

Discussion 

Effectiveness of the Marine Protected Areas 

Evaluating the effectiveness of MPAs is very important for management (Allison 

et al. 1998). Ineffective reserves can harm a fishery if they provide a false sense of 

security that deters other management options (Carr and Reed 1992). Evaluation can be 

difficult, especially since low power of statistics and experimental design can often mask 

results (Allison et al. 1998). Here we look at the trends in the Maine sea urchin MPAs 

and try to determine then- potential for sea urchin recovery. 

The general trends along the coast would suggest that the highest recovery 

potential for sea urchins is in the western part of the state. Settlement is orders of 



magnitude higher in York compared to Jonesport (Fig. 1.3). Sea urchin biomass appears 

to be historically higher in the west (usually well over 1000 to 2000 g m-2) than Jonesport 

(with maximum biomass estimates around 400 g m-2) (Figs. 1.5 - 1.10). Lastly, the more 

nutrient rich waters of the EMCC should allow more primary productivity supporting an 

alternate stable state (i.e. fleshy macroalgal beds). 

The MPAs in Maine, however, did not respond as hypothesized above. The MPA 

results can be broadly broken down into three groups: coralline communities (Pemaquid 

Point and Outer Ram), Schoodic Peninsula, and fleshy macroalgal beds (Seal Head Point, 

East Point, and Sea Duck Rock). We believe the potential utility of MPAs differs in 

these groups. 

The two MPAs that were initially sea urchin dominated coralline colnmunities 

and which rernained so (Pemaquid Point and Outer Ram Island) may have been partially 

successful in protecting sea urchin stocks. At least these areas protected the sea urchins 

from further degradation. Sea urchin biomass remained relaiively constant and fleshy 

macroalgae was absent in these MPAs. One control (Thrumcap Island) lost 75% of its 

sea urchin biomass and started to shift to a macroalgal bed (Fig. 1.7), while at the other 

control (Ram Island) biomass may have also decreased in the last two years (Fig. 1.10). 

Perhaps more important is the apparent (but not significant) trends in both of these MPAs 

of increasing sea urchin biomass in the past year or two. This trend may have been 

complicated at Pemaquid Point by a large scale sea urchin mortality that occurred in late 

summer 1999. Patchy high sea urchin mortalities were reported throughout the state and 

appeared to be associated with warm shallow waters (T. Creaser pers. comm.). Many 

dead urchins were observed at Pemaqilid Point in 1998, indicating that this unexplained 



mortality may have affected the MPA, but none were noticed in the Thrumcap Island 

control site (J. Vavrinec pers. obs.). Without this unexpected mortality, the recent trend 

in increasing sea urchin biomass might have been more definitive. Perhaps in time these 

closed areas will show significant improvements in sea urchin stocks. 

The Schoodic Peninsula MPA had results counter to our expectations. Sea urchin 

populations decreased the year after closure, although the year prior was an anomalously 

high biomass estimate and could have influenced the data (Fig. 1.8). Without the 1999 

numbers, a case could be made that sea urchin biomass had been fluctuating about some 

mean level throughout the experiment. The algal data, however, do not support this since 

macroalgal abundances started to increase in the MPA after the closure but remained low 

in the control (Fig. 1.8). It would seem the Schoodic Peninsula MPA failed to protect 

both sea urchin s toc~s  and community structure. 

The remaming sites (East Point, Seal Head Point. and Sea Duck Rock) all started 

and ended as fleshy macroalgal beds (Figs. 1.5, 1.6, and 1.9). Overall, the macroalgal 

beds were fairly stable over time and no sea urchin recovery has occurred. All the York 

sites have been devoid of urchins for at least two years. The few urchins that persist at 

Sea Duck Rock are mostly large (>6cm) and widely spaced (J. Vavrinec pers. obs.). 

Macroalgal cover has remained over 100% and did not show any indication of 

decreasing. 

Possible Reasons for MPA Fazlure 

MPA failure has been blamed on a number of causes including inappropriate 

MPA placement, Allee effects, poor enforcement, the development of unexpected trophic 



cascades (for reviews see Palumbi 2001, Gell and Roberts 2002, Palumbi 2002), and 

pollution (Allison et al. 1998, Jameson et al. 2002). We will address the possible threats 

to the Maine sea urchin MPAs and determine their likely impact on our study. 

Poor site selection is commonly cited as a cause of MPA failure and can occur if 

the habitat is inappropriate for the species being protected (Gell and Roberts 2002). In 

this case, however, sites were specifically chosen because they represent areas where 

urchins used to be numerous. We do not therefore feel that the localities chosen for the 

MPAs would adversely affect the outcome of closure. 

Another possible consequence of poor site selection is closing an area with little 

larval input (Tegner and Butler 1985, Allison et al. 1998, Botsford et al. 2001). Our data 

show poor settlement may factor into the recovery of some MPAs, notably Jonesport 

(Fig. 1.3). However, this is not true for other parts of the state (but see Hsrris et al. 2001 

for hypotheses coficerning recruitment overfishing in the whole Gulf of Maine). 

Schoodic Peninsula, the next lowest in settlement, averaged hundreds of settlers per m2 

and the highest level recorded for the York area showed over 16,000 urchins per m2 

settling in a given year (Fig. 1.3). With these numbers it is unlikely that low larval 

supply is causing the failure of MPAs in York. 

Allee effects, or reduced reproductive potential at low population sizes, can also 

impact the recovery of populations (e.g. Ebert 1998). One manifestation is low 

fertilization success as populations become more widely and thinly distributed. The 

green sea urchin may to be susceptible to these effects (Wahle and Peckham 1999) but 

our settlement data do not indicate reproductive limitation in much of the state. Another 

Allee effect documented for sea urchins on the west coast is increased juvenile mortality 



when the spine canopy of adults is reduced (Tegner and Dayton 1977, Breen et al. 1985). 

S. droebachiensis does not appear to have a similar spine canopy effect (see Chapt. 4) 

and survival of juveniles is probably not directly related to the presence of adults. 

Factors intrinsic to the urchins may also be responsible for delayed recovery. 

Slow-growing species will probably respond slower to protection than short-lived, fast- 

growing species (Russ and Alcala 1998, Halpern and Warner 2002). S. droebachiensis is 

a relatively slow-growing species (Vadas et al. 1998, Russell 2001, Vavrinec et al. 2001) 

that may only put on tens of grams per year. This slow growth combined with low 

population densities may make differences associated with closed areas difficult to detect 

and account for the ambiguous results of the coralline community MPAs. 

Pollution can also cause the failure of MPAs (Allison et al. 1998, Jameson et aj. 

2002). Some coastal sections of Maine do have elevated levels of some pollutants 

including trace metals, polycyclic aromatic hydrocarbons, and PCB,  but these levels are 

generally low, particularly when compared to other areas along the Atlantic seaboard 

(Larsen 1992). We do not think these pollutants are dramatically affecting the sea urchin 

populations since the same areas have been experiencing record landings in another 

benthic invertebrate, the American lobster Homarus americanus (DMR 2000). 

Enforcement of MPA closures is an obvious concern of managers. Poaching can 

easily negate any positive effects generated by closing an area (e.g. Russ and Alcala 

1989). We think that poaching in our MPAs was minimal since we had industry support 

for the closures from the beginning, areas initially had low sea urchin densities, and sites 

werc specifically chosen to be easily patrolled. We do know, however, that one site, 

Schoociic Peninsula, was fished and probably quite intensively. Fishers admitted to us 



and DMR (R. Russell pers. comm.) that they had fished the area, at least during the 

199912000 fishing season. This poaching probably explains the unexpected decreases 

seen in the MPA (Fig. 1.8) and the added attention placed on the MPA may have 

inadvertently reduced pressure on the control site. 

Lastly, unexpected trophic cascades, where perturbations in one trophic level are 

transmitted down the food web, can create unanticipated results after the closure of 

MPAs (Pinnegar et al. 2000). Numerous studies around the world have seen an increase 

in higher order predators (e.g. fish and lobsters) within closed areas, which in turn prey 

on urchins (e.g. Cole et al. 1990, Sala and Zabala 1996, Cole and Keuskamp 1998, 

Babcock et al. 1999, McClanahan 2000, Shears and Babcock 2002). Therefore 

preventing fishing mortality may not protect species from unintended elevations in 

natural mortaljty. However, we do not think that trophlc cascades resulting from closure 

are affecting om results for a number of reasons. First, the major predators of sea urchins 

in the Gulf of Maine including fish (Keats et al. 1986, 1987, Keats 1991, Vadas and 

Steneck 1995) and cancrid crabs (Scheibling 1996, Leland et al. in review) are not 

protected by the MPAs. Second, there is no evidence of predator based trophic cascades 

once the MPAs are closed. Lastly, we believe there are important lower order trophic 

cascades in this system that led to an alternate $table state (i.e. overfishing of sea urchins 

has created an increase in fleshy macroalgal beds), but they occurred before the 

macroalgal sites were closed, ensuring the stability of the community structure and 

failure of the MPAs to replenish sea urchin populations. 



Ecosystem Changes and Stability of the Macroalgal State 

Many changes in ecosystems are linear and gradual over time, but sometimes 

abrupt, dramatic changes occur that create an alternate state (May 1977, Knowlton 1992, 

Scheffer et al. 2001). These types of phase shifts between community states are well 

described for the Gulf of Maine (for reviews see Pinnegar et al. 2000, Steneck et al. in 

press). Historically large populations of predatory groundfish dominated the coastal Gulf 

of Maine (Steneck 1997) and probably controlled benthic invertebrate populations 

including crabs (Witman and Sebens 1992), lobsters and urchins (Vadas and Steneck 

1995). Without a functional herbivorous trophic level, the benthos was probably 

dominated by large macroalgal beds (Vadas and Steneck 1988, Steneck 1997). In the 

early and mid 1900s, however, technological advances in the fishing industry allowed 

widespread depletions in groundfish stocks, releasing benthic invertebrates from 

predation pressure (Steneck 1997). Increases in sea urchin populations (and therefore 

herbivory) deforested much of the coast by the 1960s and shifted the hard benthos from 

fleshy macroalgal beds to coralline dominated sea urchin barrens (Steneck 1997). This 

state remained until the late 1980s when fishermen started harvesting the green sea 

urchin. Intense, targeted fishing of the sea urchins has led to localized depletions and 

allowed the reformation of macroalgal beds (Steneck 1997, McNaught 1999). Therefore, 

at least two phase shifts have occurred in the last century due to the senal removal of 

trophic levels (Steneck et al. in press). 

This last phase, the fleshy macroalgal beds, exhibits the signs of being an 

alternate stable state. Multiple stable states describe numerous community assemblages 

that may be stable for a given environment, either at the same time or in the same place at 



different times (Sutherland 1974). In theory, alternative states arise from different 

starting points (e.g. recruitment history) or as a result of perturbation pushing the system 

to a new equilibrium point (Lewontin 1969, May 1977, Bender et al. 1984, Knowlton 

1992). Once this disturbance hits a threshold level, the changes in the community are 

usually quite fast and dramatic (May 1977, Knowlton 1992). After the change occurs, 

there needs to be some feedback in the community that prevents the re-establishment of 

the alternate dominant species (i.e. predation. low recruitment, etc.) (Sutherland 1990) 

and reversal usually requires a higher critical level or threshold (i.e. hysteresis sensu 

Scheffer et al. 2001). Lastly, stability is usually defined as persistence longer than the 

lifespan of the dominant organism (Connell and Sousa 1983). 

Maine fleshy macroalgal beds demonstrate these characteristics. Coralline 

communities are stable until sea urchin biomass is reduced to a critical level (McNaught 

1999, Chap. 2) and then a rapid shift occurs forming a macroalgal bed (e.g. Fig. 1.5). It 

appears that much higher densities of urchins are needed (i.e. hysteresis) to convert the 

macroalgal beds back to a coralline community (Scheibling and Hatcher 2001, Leland et 

al. in review). The fleshy macroalgal beds in York have persisted for at least seven years 

in some cases (Figs. 1.5 and 1.6), much longer than the average lifespan of one to three 

years (Chapman 1986) of the dominant Laminaria kelp. Feedback mechanisms 

preventing the re-establishment of sea urchin populations are also being discovered 

McNaught (1999) found that post-settlement mortality can be as high as 99.9% by year 

one due to predation by small crabs and amphipods. Leland et al. (in review) 

demonstrated larger urchms are also sdsceptible to predation from large migratory Jonah 

crabs (Cancer borealis) and whole sea urchin populations introduced into macroalgal 



beds were eliminated. The macroalgae itself may also deter sea urchin recolonization 

through whiplash (sensu Dayton 1975) effects (Kennelly 1989, Konar 2000, Konar and 

Estes 2003). Additionally, the macroalgal beds may be transitioning from the traditional 

kelp bed (Johnson and Mann 1988) to a complex dominated by understory (J. Vavrinec 

unpublished data) or invasive species (Levin et al. 2002) that is denser than the kelp, can 

occupy more substrate, and may further exclude urchins (Levin et al. 2002). Therefore 

we conclude that internal mechanisms and feedbacks, not artificial forces (Petraitis and 

Dudgeon 1999), are perpetuating this community state after the initial disturbance (i.e. 

fishing), creating a true alternate stable state for the region. 

In Maine, the phenomenon is not just the stability of a few areas. Our data 

suggest that this phase shift is moving up the coast (Fig. 1.4). By 1996, all our study sites 

in York had changed to fleshy macroalgal beds but many had started shifting long before. 

In contrast, in 1996 nearly every site in the Pemaquid, MDI, and Schoodic regions were 

still coralline communities. Macroalgal cover started increasing in the Pemaquid region 

shortly thereafter and now it is difficult to find large intact sea urchin coralline 

communities in the area (J. Vavrinec pers. obs.). We are now also starting to see an 

increase in macroalgal cover in the central part of the state. This rolling community 

change is probably in response to shifting efforts by fishers as they deplete areas and 

move to more productive grounds (McNaught 1999). Consequently, Maine continues to 

lose productive sea urchin fishing grounds that will be difficult to reclaim for the fishery. 



Implications 

We believe this study reinforces the call for managers to understand the ecology 

of areas under their control (e.g. Allison et al. 1998). Realizing the presence, or even 

potential, of catastrophic shifts in the ecosystem (Scheffer et al. 2001) creating alternate 

stable states can mean the difference between success or failure of MPAs, and indeed 

whole management plans. This reason for failure is more natural but less obvious than 

traditional excuses (i.e. pollution, climate change, increased sedimentation, etc.) and 

could be easily overlooked in planning stages. 

To make matters worse, current fishing practices may be predisposing ecosystems 

to these types of changes. Many studizs are now showing that reducing species diversity, 

especially within trophic levels, can make communities more prone to troyhic cascades 

(Tilman 1996, Naeem and Li 1997, Borrvall ei al. 2000, McGrady-Steed  an^ ~Morin 

2000). Some systems like the Gulf of Maine start out with fairly low diversity (e.g. 

urchins are the primary functional herbivore in coastal habitats [Steneck and Dethier 

19941). However, most areas are being made simpler as industries continue to fish out 

populations and trophic levels (Pauly et al. 1998). Perhaps Scheffer et al. (2001) are 

correct in asserting that ecosystem resilience should be the focus of fisheries management 

because catastrophic shifts in the ecosystem may too big a problem to handle afterwards. 

Finally, this study demonstrates the importance of reporting failures as well as 

successes in MPAs. The overwhelming evidence supporting MPAs in recent reviews 

(Palumbi 2001, Gel1 and Roberts 2002, Halpern and Warner 2002, Halpern 2003) could 

be partially dbe to the bias against publishing negative results, creating a lopsided 

argument (Gould 1993). However, these negative results, provided they are supported 



adequately by the experimental design and statistics (Allchin 1999), can help educate the 

creators of MPAs and management plans and warn of potential problems. Informed 

decisions, based on all the scientific facts, will allow more effective use of management 

tools in protecting the ecosystems of the world. 



Chapter 2. Ecologically effective population densities: quantifying breakpoints for 

alternate stable states. 

Abstract 

Population reductions in ecologically important species can degrade ecosystem 

function and drastically alter community structure. We calculated the point (ecologically 

effective biomass) at which green sea urchins Strongylocentrotus droebachiensis could 

no longer control the biomass of fleshy macroalgae in Maine leading to a community 

shift from urchin-dominated coralline communities to macroalgal beds. This ecologically 

effective biomass varied with depth and location along the coast, probably due to changes 

in macroalgal productivity and grazing abilities. These processes, in turn, are most likely 

dependent on abiotic (light, water motion, temperature) and biotic (metabolism, 

movement) factors. The data presented here are important for management of strongly 

interacting species because they demonstrate quantitatively ecologically effective 

population limits may vary greatly even over short distances and can generally only be 

determined after community structure has been altered. It is therefore recommended that 

managers be conservative in their estimates and allow for worst case scenarios to 

preserve healthy ecosystems. 

Introduction 

Many ecosystems do not respond gradually to environmental changes, but 

undergo rapid and dramatic transitions (far review see Scheffer et al. 2001). This is 

especially true when those changes affect strongly interacting species that control 



community structure (Paine 1980). Reductions in important species may go unnoticed 

until a threshold, or point of no return, is reached, after which the system quickly shifts to 

an alternate state (May 1977, Knowlton 1992, Scheffer et al. 2001). 

Therefore, in order to preserve ecosystem structure, important species must be 

kept above these threshold values. To this end, Soult et al. (in press) recently called for 

the protection and restoration of "highly interactive species" above "ecologically 

effective population densities." These densities are not just the minimum viable 

population size but the level at which populations must be maintained for their impact to 

bc felt on the ecosystem. Unfortunately these levels are usually unknown (Soule et al. in 

press). 

We attempted to quantitatively determine the point at which the green sea urchin 

Strcmgylocentrotus Liroebachzeri~is became ecologicall~. ineffective along the coast of 

Maine. Here, 5. droebachiensis, like mavy sea urchins worldwide (Lawrence 19'75, 

Hanold and Pearse 1987, Pinnegar et ai. 2000, Steneck et al. 2003) can control the 

community structure of hard benthic substrates (Breen and Mann 1976, Lang and Mann 

1976, Scheibling 1986). When sea urchin densities are high, the benthos is denuded of 

fleshy macroalgae and characterized by a pavement of crustose coralline algae (i.e. 

"urchin barrens"). That is, coralline communities dominate when the grazing (or 

disturbance - d) is greater than or equals the macroalgal productivity (p). When sea 

urchin densities fall below a certain level and herbivory is adequately reduced (p > d), 

however, the benthos undergoes a rapid and dramatic phase shift to expansive fleshy 

macroalgal beds. These macroalgal  bed^ appear to be an alterrate stable state and inhibit 

the repopulation of urchins (Johnson and Mann 1988, McNaught 1999, Chapt. I). 



The green sea urchin populations in Maine have undergone dramatic changes in 

the last century. Historically, sea urchin populations were probably controlled by large 

predatory groundfish and existed in very low numbers (Vadas and Steneck 1995, Steneck 

1997). Overfishing of the groundfish in the early 1900s removed this predatory control 

and by the 1960s sea urchin-dominated coralline communities were spreading throughout 

the state (Steneck 1997, Steneck et al. 2003). In 1986, an export fishery started to harvest 

the sea urchin and now urchins are becoming functionally absent in many parts of the 

state. Fleshy macroalgal beds are again becoming common (McNaught 1999, Chapt. I). 

As a result of these shifts in community structure, we have a natural laboratory to 

study the point at which sea urchin populations can no longer control fleshy algal 

populations. We present data quantifying this population level, and how that value 

changes with longitude and depth. We.also attempt to explain these results as dependant 

on biotic and abiotic factors. 

Materials and Methods 

SCUBA divers performed benthic surveys to obtain the quantitative data used for 

these analyses. We conducted these surveys in July and August each year to allow full 

development of the algal community, to make logistics easier, and to avoid potential 

seasonal variations in the sea urchin populations (Konar 2001). Surveys were conducted 

at 5,8, 10, 15, and 20 m depths from 1996 to 2002 (data prior to 1998 from McNaught 

1999). Regional cemparisons were conducted at sites (described in Chapt. 1) in four 

areas of the coast of Maine (York, Pemaquid, Mount Desert Island, and Jonesport; see 



Fig. 2.1) and standardized for 10 m depth. We conducted all the multidepth surveys in 

the Pemaquid region (approximately N 43" 50', W 69" 3 1') at the sites marked in Fig. 

2.1. Due to a number of circumstances we were not able to conduct surveys at all sites 

and all depths in all years. We haphazardly threw at least twenty 1 m2 quadrats in each 

site on ledge substrate to standardize habitat characteristics. 

Sea urchin surveys were conducted using a telescoping quadrat design (described 

in Chapt. 1). This design allows for adequate sampling of all size classes of sea urchins 

and placing them in 5mm bins based on test diameter (TD). With these data, we 

constructed size frequency distributions per m2 for each quadrat. We then converted this 

distribution into a biomass estimate (g m-2) since sea urchin biomass is a better predictor 

of herbivory (disturbance) than sea urchin densiiy (Steneck and Dethier 1994). We 

multiplied the number of sea urchins in each size class by the mean wet weight for that 

size class (calculated from the regression log biomass = 2.84 (log TD in cm) - 0.23 

[McNaught 19991). Total biomass was then summed for the quadrat and all quadrats 

were averaged for a site average biomass. 

We conducted algal surveys at the same time as the sea urchin surveys. We 

estimated the percent cover for each species within the same 1 m2 used for the sea urchin 

surveys. Algae that could not be identified were quantified by functional group (Steneck 

and Dethier 1994). For the purposes of these analyses though we combined the species 

and functional groups into three tiers (crusts, understory, and canopy) for a potential total 

of 300% (100% for each tier) cover. Since crusts can be ubiquitous, found in both 

coralline communities and fleshy macroalgal beds (Harrold and Pearse 1987, Johnson 

and Mann 1988), they were not used in the analyses. We therefore plotted the sum of the 
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Figure 2.1. Map of the Gulf of Maine with our four study regions labeled. The 
enlargement of the Pemaquid Region indicates all the sites (a) used in the multidepth 
surveys. 



understory and canopy components for a possible 200% cover. In 2002, we saw a large 

settlement of small blue mussels (Mytilus edulis) that completely covered the benthos and 

all algae in places. Since sea urchins can feed on small mussels (Lawrence 1975, Briscoe 

and Sebens 1988) and completely remove them from the benthos (J. Vavrinec pers. obs.), 

we included mussels in the calculation of benthic cover. Lastly, a few areas had 

extensive growth of the ascidian Amaroucium lissiclum in 2002 which could also 

dominate the substrate. We rarely observed these colonies in well established urchin 

dominated-coralline communities except in protected area (overhangs, vertical surfaces, 

etc.), leading us to believe that urchins may well control these populations as well. While 

we do not think that the urchins are feeding on intact colonies, they probably prevent the 

establishment of new colonies in barrens (incidentally) as they move around the substrate 

grazing (Harrold and Reed 1985). For these reksons, we added the percent cover of ?he 

understory and canopy algae, the mussels, and the ascidian to determine the total benthic 

cover for a quadrat. All the quadrats in a site were averaged to obtain a site average for 

benthic cover. 

To establish the point at which sea urchins could no longer control the community 

structure, we plotted the benthic cover against sea urchin biomass for all sites in a 

category (i.e. depth or region) and fitted a regression to the data. A three parameter 

sigmoidal regression (f = a / (1 + exp(-(x - xO) / b))) was then fitted to the data in 

Sigmaplot (SPSS Inc., Chicago, IL). We chose a sigmoidal regression because it best 

describes the rapid non-linear transition from coralline communities to fleshy macroalgal 

beds (i.e. with high sea urchin biomass, macroalgal cover was consistently low; at low 

sea urchin bicmasses macroalgal cover was consistently high). We then calculated the 



effective sea urchin biomass as the biomass in the regression where the macroalgal 

community gained dominance (i.e. where total cover equaled 50%). 

Results 

Effective sea urchin biomass estimates were calculated from sigmoidal 

regressions applied to data in each region and depth category. In all cases, the sigmoidal 

regression was a better fit) than a linear regression (using r2 and p values for comaprison. 

The depth specific effective urchin biomasses in the Pemaquid region were 

inversely related to depth (Figs. 2.2 and 2.3). The calculated effective biomass at 5m 

from McNaught (1999) was 1330 g m.2. We calculated the effective biomass at 8, 10, 

and 15 m as 650,292, and 48 g m-2, respectively. Surveys conducted at 20 m could not 

find any established macroalgal beds with more than 20% cover (mostly small 

filan~entous species), even though there were often no urchins present. The few 30 m 

surveys were all done at well developed crustose coralline communities with little sed 

urchin biomass, indicating there was probably no development of fleshy macroalgai beds 

even in the absence of urchins. 

A compilation of the decreasing urchin biomass threshold is shown in Fig. 2.3A. 

For comparison, an average light attenuation curve from June and August 2002 (E. Annis 

unpub. Data) is also presented (Fig. 2.3B). To compare the sea urchin biomass threshold 

and light intensity curves, each value at depth was converted into a percent of the 5m 

value. While both curves are similar with an exponential reduction, the biomass 

threshold decreases faster than the light attenuates (e.g. 22% versus 47% of 5m values 

remain respectively at IOm). 
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Figure 2.2. Plots of total benthic cover versus average urchin biomass for three different 
depths in the Pemaquid region. Each point represents the averages of one site for a given 
year. Curves are sigmoidal regressions fitted to the data. Percent benthic cover includes 
all fleshy macroalgae, newly settled Mytilus edulis, and the ascidian Amaroucium 
Eissiclum. Effective sea urchin biomasses were defined as the biomass where the 
regression intersected 50% benthic cover. Effective biomass values from A to C are 650, 
292, and 48 g m-2, represented by arrows on the x-axis. 
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Figure 2.3. A. Calculated effective urchin biomass with depth from the Pemaquid region. 
The Sm value is from McNaught (1999) and the 20 and 30m values are estimates based 
on personal observations (see text). B. Comparison of changes in light intensity and 
effective urchin biomass with depth. Data are calculated as a percentage of the 5 m value 
(i.e. 5 m = 100%; 10 m = 10 m value / 5 m value). 



Regional calculations of effective biomass along the coast were all within the 

same order of magnitude and exhibited some relationship with latitude (Figs. 2.4 and 

2.5). The biomass of sea urchins needed to maintain a coralline at 10 m decreased from 

west to the east along the coast. In York, the effective biomass was calculated as 755 g 

m-2. As already reported, the Pemaquid value was 292 g m-2, which was very similar to 

the Mount Desert Island value of 280 g m-2. The effective urchin biomass was lowest in 

the Jonesport region (186 g m-2). 

Discussion 

Macroalgal development is a function of two processes: the ability of the urchins 

to remove the algae (disturbance potential) and the capacity of the algae itself for growth 

(productivity potential) (Steneck and Dethier 1994). If productlvitj increases, more 

urchins, or more efficient urchins, are needed to control algal populations. The opposite 

is true if productivity potential decreases. We believe that examining these two 

environmental characteristics can explain the trends seen in both the depth-related and 

regional effective urchin biomass values calculated as needed to control macroalgal 

growth. 

Depth Related DifSerences 

Fewer urchins were needed to maintain the coralline communities at deeper 

depths. Light is obviously an important contributor to this pattern, and can control algal 

communities even without herbivory (Vadas and Steneck 1988). Patterns of light 

attenuation and effective urchin biomass with depth are similar but do diverge (Fig. 2. 
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Figure 2.4. Plots of total benthic cover versus average urchin biomass for three 
remaining regions along the coast of Maine. MDI = Mount Desert Island. All sites were 
located at 1Om depth. Effective urchin biomasses, from A to C, are 755,280, and 186 g 
m-2, represented by the arrows on the x-axis. The Pemaquid region (10m) curve is shown 
in Fig. 2.2 and the effective biomass was calculated as 292 g m-2. Derivations of the data 
are the same as Fig. 2.2. 
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Figure 2.5. Calculated effective urchin biomass along the coast of Maine. Each region is 
labeled as indicated in Fig. 2.1. 



3B), implying that deeper urchins are more efficient at controlling algal populations than 

shallow populations. 

The difference in sea urchin impacts may be a due to urchin movement. All 

biomass estimates determined in this analysis were based on summer surveys. 

Unpublished data indicates that urchins may not stay shallow the whole year, but move 

up and down the ledge with changing conditions (Fig 2.6). The urchin population was 

greater at 4 m in April than January, and appeared to move slightly deeper as the year 

progressed. Sea urchins may move deeper in the winter (probably due to winter storms) 

and summer (probably due to increasing temperatures) (J. Vavrinec unpubl. data). The 

result is an average annual urchin biomass that may be different from the biomass we 

calculated in shallower waters. 

Wave energy may also affect the impact of sea urchins in shallower waters. 

Water movement can keep the urchins from accessing the algae or cause whiplash effects 

from the shallow band of macroalgae that can damage the urchins (Hirnrnelman and 

Steele 1971, Konar 2000, Konar and Estes 2003). All our sites were exposed coastal 

areas and subject to rough seas. Shallow sea urchins may have had to spend more time 

holding on or seeking refuge than sea urchins at deeper sites, affecting their ability to 

feed. 

Temperature may be a third important factor in urchin grazing. It has been 

suggested that S. droebachiensis increases grazing rate with rising temperature (for 

review see Scheibling and Hatcher 2001) but, above 17°C Leland (2002) found a rapid 

decline in grazing rate. If the sea urchins are subjected to these high temperatures in the 

summer, then we could expect to see the type of curve depicted in Fig. 2.3B. The 
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Figure 2.6. Average percent of the total urchin biomass per quadrat over four months in 
relation to depth. Samples were conducted at Pumpkin Cove (Fig. 2.1) in six permanent 
quadrats every 2m in depth from 2 to 20m. All surveys were conducted in the beginning 
of the respective month in 2002 as described in the text. 



stratified surface waters at our study sites during the summer can easily experience 

temperatures above 17°C (see Fig. 2.7 for a sample CTD cast) but the temperature 

quickly drops as one goes deeper. Therefore, sea urchins found in very shallow waters 

may be experiencing heat-related stress while other urchins a few meters deeper are still 

within optimal temperature ranges for metabolism. 

Regional Differences 

Our data show that different effective biomasses are required along the coast of 

Maine, the highest being in the southwestern part of the state. Many of these differences 

are probably related to the differences in the complex currents associated with different 

parts of the coast within the Gulf of Maine (see Fig. 2-8 for diagram and Beardsley et al. 

1997 for a full description). The Eastern Maine Coastal Current (EMCC) in the 

northwest is generally faster moving, less stratified, richer in nutrients, and colder than 

the southern Western Maine Coastal Current (WMCC) (Townsend et al. 1987, Pettigrew 

et al. 1998). These differences in the two coastal currents can cause some of the 

differences observed in regional effective biomass estimates. 

Summer sea surface temperatures in the well-stratified WMCC routinely exceed 

the 17°C (satellite data from http://www.gomoos.com) temperature limit for effective 

urchin foraging (Leland 2002), probably reducing the per capita impact of the sea urchins 

as in the depth study. Water in Jonesport does not appear to get that warm, and our two 

intermediate sites experience temperatures in between as mixing occurs between the 

EMCC and WMCC. These patterns alone could help explain the differences seen in the 

regional threshold estimates. 
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Figure 2.7. Representative temperature profile of a stratified summer water column. 
These data were collected off Damariscove Island, Pemaquid Region, on 15 August 2002 
(data courtesy of E. Annis). The point where the temperature drops below 16°C is 
indicated by the arrow. 



Figure 2.8. Map showing prevailing surface currents in the Gulf of Maine (adapted from 
Beardsley et al. 1997). Of interest are the strong, mixed Eastern Maine Coastal Current 
(indicated by the darker solid line) and the weaker Western Maine Coastal Current. 
Regional locat~ons indicated are the same as in Fig. 2.1. 



Potential productivity of the macroalgae can also be a factor in regional patterns. 

There is some indication that macroalgal growth in the WMCC experiences a seasonal 

nutrient limitation not seen in the EMCC (S. Zimsen pers. comm.). Despite this, there are 

limitations in light availability that may reduce productivity potential. First, the tides in 

the eastern part of the state are generally larger than the western (mean tidal range is 

3.5m in Jonesport, 3. lm at MDI, and 2.6m at Pemaquid Point and York Harbor; http://co- 

ops.nos.noaa.gov/tides03/tpred2.html#MN). Since our sites are standardized for - 10 m 

mean low water, the difference in tidal range makes our sites in eastern Maine deeper on 

average (see previous section for implications). Additionally, light attenuation in the 

water column appears to be greater in the EMCC (from depth of 1% light penetration 

graphs at http://grre.umeoce.maine.edu/ecohab.html; S. Zimsen pers. comm..), probably 

due to resuspension in the larger tidal flows. Lastly, the colder water of the EMCC tends 

to produce more fog than the WMCC, further limiting light reaching the benthos. All of 

these factors could drive the effective urchin biomass estimate further down the depth 

curve from 10 m. The result of this is that a lower urchin biomass would be needed to 

maintain the coralline state. 

Lastly, differences in the regional effective biomass estimates may be partially 

due to demographic differences in the urchin populations themselves. In general, urchins 

are much larger in the eastern than the western parts of the state. For example, if we pool 

all our regional data in 1998, we see that York possessed almost no sea urchins larger 

than 20 mm TD whereas Jonesport urchins reached almost 90 mm (Fig. 9). This could be 

due to the fact that areas in the western part of the state were being fished more heavily 

than the eastern parts at the start of this study (McNaught 1999), but there is also urchin 



growth curve evidence to suggest that sea urchins do not attain as large a size in 

Pemaquid as they do in Jonesport (Vavrinec et al. 2001). For whatever reason, the York 

biomass estimate is based on smaller urchins than the other regions and could help 

explain the much higher biomass needed at the southern site (larger sea urchins can have 

a greater per capita impact). 

Implications 

Soule et al. (in press) suggest that estimating ecologically effective population 

levels could be problematic and results could vary with the locale. Our estimates were 

calculated only after sea urchin populations in many areas had probably been reduced 

below ecologically effective levels. Additionally, these levels vaned greatly not only 

between but within regions in response to intrinsic and extrinsic vanables such ds 

temperature, productivity potential, and growth characteristics. Therefore any 

management plan, especially without specific knowledge of the local ecosystem, should 

account for the highest levels needed to maintain ecologically effective populations. For 

example, coast-wide management measures based on effective urchin biomass estimates 

for Jonesport would allow the western part of the state of Maine to become 

overharvested, creating large-scale shifts in community structure from coralline 

communities to macroalgal beds. It is recommended that managers be conservative in 

calculating their ecologically effective biomass estimates and account for the ecology of 

the entire community as well abiotic characteristics of their ecosystems. 

We also suggest that macroalgal biomass is a function of productivity minus the 

disturbance (b = p - d). This dynamic can be seen in other related alternate stable states. 



For example, African woodlands have been decreasing as a result of increasing 

disturbance (due to elephant foraging and anthropogenic fires) while productivity 

remained constant (Dublin et al. 1990). Elevated white-tail deer populations (increased 

disturbance) may have lead to alternate woody plant communities in the eastern US 

(Stromayer and Warren 1997). Herbivory (increased disturbance) may affect community 

structure in semi-arid grazing systems, but changes in soil nutrient availability (decreased 

productivity) probably perpetuate the alternate state (Rietkerk and van de Koppel 1997). 

Lake eutrophication and changing water levels (changing productivity) probably cause 

communities to move to alternate stable states in many lake environments (Blindlow et 

al. 1993). Sea otter populations determine community organization in the Pacific 

Northwest based on changlng disturbances from hunting or killer whale predation (Estes 

and Pali~isano 1974, Estes and Duggins 19%). Macroalgal growth on coral reefs is 

largely due to reductions in herbivory (for review see Knowlton 1992) and may be 

exacerbated by increases in nutrient (increased productivity) availability (e.g. Hughes et 

al. 1999). 

Our results show the significance of effective populations in controlling the 

stability of community types. Thresholds have been dealt with conceptually (May 1977, 

Knowlton 1992, Scheffer et al. 2001), but our results quantify actual biomass levels 

needed to preserve the community composition. Once this level is reached, dramatic and 

severe consequences occur. Understanding these values and planning for them in 

conservation goals is a difficult but necessary component of any management strategy 

seeking to preserve the ecological structure of ecosystems. 



Chapter 3. Transport of a benthic invertebrate to shallow settlement grounds: 

downwelling in the North Atlantic. 

Abstract 

Settlement of the green sea urchin Strongylocentrotus droebachiensis was 

monitored for five years on the coast of Maine. In most years settlement was associated 

with strong northwest wind events that would advect warmer surface waters onshore, 

creating "downwelling" conditions. We present data that show the influx of warmer 

stratified surface waters into coastal regions during these events and show how larval 

placement high in the water column contributes to the success of the system. Times 

when settlement did not correspond to this pattern were also explored. They were 

probably due to decreases in water column stratification or the effects of direct wind 

forcing. We also document for the first time the apparent presence of newly 

metamorphosed S. droebachiensis sea urchins in the water column. 

Introduction 

The majority of marine invertebrate life cycles have planktonic larvae with 

benthic juveniles and adults phases (Thorson 1950). This larval phase facilitates 

dispersal both away from and to appropriate benthic settlement substrates (Thorson 

1946). Since dispersal and settlement often drive the structure of populations and 

communities (e.g. Underwood and Denley 1984, Gaines and Roughgarden 1985), many 

scientists have called for a marriage of the fields of benthic and larval ecology to better 

study marine ecosystems (e.g. Eckman 1996). 



Many studies have been done attempting to link physical oceanographic processes 

with larval delivery, since most larvae cannot swim well against prevailing water 

movement and often have to rely on placement in wind- or tidally-driven currents 

(Shanks 1995). This research has included work on local currents (e.g. Sammarco and 

Andrews 1988, 1989, Phillips et al. 1991, Gabric and Parslow 1994, Pattiaratchi 1994, 

Sammarco 1994, Cowen et al. 2000), internal waves (Pineda 1999), pycnoclines (e.g. 

Metaxas and Young 1998a, Pearce et al. 1998), frontal zones (Franks 1992, Shanks et al. 

2000), and wind-driven movement (e.g. Bertness et al. 1996). 

The transport of invertebrate larvae onshore by relaxations in upwelling events is 

a well known wind-driven dynamic on the west coast of North America where upwelling 

is very strong and dominates the ecosystem (e.g. Wing et al. 1995a, Wing et al. 1995b, 

Miller and Emlet 1997, Botsford 2001). With the exception of Shanks (2000) in North 

Caroiim, little has been done on the east coast, however, probahly because upwelling is 

not as obvious and dramatic. Yet we think that the wind-driven advection of surface 

waters onshore (i.e. "downwelling") can have important impacts on in the North Atlantic 

and may be responsible for delivering larvae to preferred settlement grounds along the 

coast. To determine the effects of wind direction on settlement of the green sea urchin 

(Strongylocentrotus droebachiensis) we studied larval distributions in the water column, 

settlement, wind stress, and hydrographic conditions along the midcoast of Maine for five 

years. These data suggest that the position of competent sea urchin larvae in the water 

column allows them to be advected inshore to shallow water settlement sites during 

periods of "downwelling". 



Materials and Methods 

Study Organism 

The green sea urchin (S. droebachiensis) is an important component of the Gulf of 

Maine benthos. Functionally, the green sea urchin is the pnmary coastal herbivore 

(Steneck and Dethier 1994) and like many urchins worldwide (Lawrence 1975, Harrold 

and Pearse 1987, Pinnegar et al. 2000, Steneck et al. 2003) its population dynamics can 

control benthic community structure on hard substrates (Breen and Mann 1976, Lang and 

Mann 1976, Scheibling 1986). In the last 15 years, the sea urchin has become an 

extremely valuable fishery in the state of Maine and populations in many areas have been 

severely depleted resulting in the spread of high-biomass fleshy, macroalgal beds 

(Steneck 1997, McNaught 1999, Chap. 1). 

The green sea urchin is a broadcast spawner with d pelagic larval phase. Gametes 

are released late winter, early spring, with sea urchins at the southwestern end of the Gulf 

of Maine coastline spawning approximately six weeks before those at the northeastern 

border (Vadas et al. 1997). The sea urchin larvae (or echinoplutei) then develop through 

four-, six-, and eight-armed stages (Strathmann 1987). Echinoplutei can swim (and feed) 

using ciliary action once the larval arms develop (Strathmann 1971). Development of the 

larvae to metamorphosis can take between 5 and 21 weeks in S. droebachiensis 

depending on temperature (Strathmann 1978, Strathmann 1987, Hart and Scheibling 

1988), but probably average around eight weeks in Maine (Towers 1976). 

Sea urchin settlement varies along the Maine coast. Settlement usually occurs in 

late May and June, probably starting earlier in the south and later in the north (Harris et 

al. 1994, McNaught 1999). The level of settlement also differs, often by orders of 



magnitude, with the highest densities of new urchins occurring in the southern parts of 

the state (Harris and Chester 1996, Balch et al. 1998, McNaught 1999, Chapt. 1). Harris 

et al. (1994) determined sea urchins preferentially settle in shallower waters (maxima 

around 6 to 9 m). 

Sea Urchin Settlement 

Two separate settlement experiments were performed to examine the settlement in 

this sea urchin. Both used the artificial turf (Astrotup,  Monsanto Corp., St. Louis, 

MO) collectors described in Chapt. 1 and McNaught (1999). 'These collectors were 9 x 

20 cm, attached to flat PVC plates for rigidity, and fastened to bolts cemented into the 

ledge. Collectors were carefully collected by SCUBA divers, washed, and sorted (see 

McNaught 1999, Chapt. 1). 

To examine possible effects of wind direction on settlement, we placed co!lectors 

on the east and west sides of Pemaquid Point, Maine (N 43" 50' W 69" 31', Fig. 3.1). 

Sites were granitic ledge in lOm of water scraped of all fleshy macroalgae. We placed 

four settlement collectors at each site for short durations during the month of June, after 

which we retrieved the collectors and replaced them with fresh ones. We tried to 

exchange the collectors every day in 1998, 1999, and 2000, and averaged every three or 

four days in 2001. The contents of the collectors were sorted and the number of sea 

urchin settlers was determined. When the collectors were out for more than one day, the 

total number of urchins was divided by the number of days in the water for an average 

settlement per day. 



Figure 3.1. Location of study sites in the Gulf of Maine. Settlement sites are denoted by 
a crossed circle (O), larval sampling sites are marked with a cross (+), and stations 
where CTD casts were conducted are shown with a triangle (A) .  The filled circle ( 0 )  

indicates the location of NOAA Buoy #44007. 



We conducted a second experiment in 2002 to determine the effect of depth and 

wind on settlement and coastal water temperature. These trials were conducted on the 

east side of Pemaquid Point (Pumpkm Cove, Fig. 3.1) from 1 June to 28 June. Four turf 

collectors were placed at 6,8,  10, 12, and 14 m depths and exchanged every four to five 

days. Again, the number of settlers on a settlement collector was divided evenly by the 

number of days in the water. Each depth station also had a Hobotemp (Onset C o p ,  

Pocassett, MA) temperature logger placed by the collectors for the duration of the 

experiment. 

Wind Estimates 

In each year, we calculated daily wind stress using wind velocity and direction 

data from the NOAA Buoy #44007 located off Portland, Maine (Fig. 3.1). Since winds 

from 75" T are approximately parallel to the shore and most likely to affect settlement, 

we defined these east-northeast winds as a positive wind stress and west-southwest winds 

as negative. For each entry, we converted wind velocity into wind stress (z) using the 

formula s = pa CD w2 where pa is the density of the air (1.3 kg m"), CD is a drag constant 

(0.0013), and W is the longshore velocity of the wind (Pond and Pickard 1983). All 

values were then averaged for the whole day to characterize the wind for the time the 

settlement collectors were out (i.e. starting and ending -0900 hrs EST). 

CTD Stations 

In 2001, we conducted CTD (Conductivity, Temperature, Depth) casts to 

characterize the temperature profile of the coastal waters by our settlement sites. Eight 



stations were set up in a line off Pemaquid Point perpendicular to the shore (165", Fig. 

3.1). The first station was close to land in 25m of water. The other stations were spaced 

approximately every 1.84 krn (1 nmile) off shore, and all were deeper than 50m. 

Temperature casts were performed using a SEACAT19 CTD (Sea-Bird Electronics Co., 

Bellevue, WA) and temperatures were averaged into 0.5 m depth categories. Four sets of 

CTD casts were made on June 18,22,27, and 28 (Julian Day 169, 173, 178, and 179). 

The first three dates we were able to sample all eight stations, but we could only sample 

the first five stations on JD 179. 

Larval Distribution 

We attempted to determine the vertical distribution of echinoplutei in the waters 

off Pemaquid Point. We sampled tho sites (- 5 and 9 h south of Thrumcap Island) 

where shallow water turbulence was less (Fig. 3.1). We used a homematie pump 

plankton sampler. Water was drawn through a garden hose (- 16 mm dia.) at depth by an 

impeller driven sprinkler pump. The water then passed through a modified home water 

filter (similar in design to the system of Berman and Kimor 1983) using a Nytex mesh 

filter. The filtered water was metered to quantify the volume sampled. In 1998, water 

was passed through an in-line 300 pm mesh filter. To insure that smaller echinoplutei 

were captured during sampling and not passing through the filter, we reduced the mesh 

size to 156 pm in subsequent years. In 2000, the filter was removed from the sampler, 

and water was passed through a plankton net to reduce pressure on the mesh. In both 

cases, the in-line filter or cod end of the net were modified to create a sample container 

that could be easily switched in the field and capped to allow multiple samples in a given 



day. We also recorded the temperature and salinity of the water at each depth with a YSI 

30 Salinity I Conductivity1 Temperature meter (YSI Inc., Yellow Springs, OH). This 

method was later validated with concurrent casts with the CTD. 

Water samples were taken from discrete depths to quantify vertical distribution of 

the larvae. We sampled the entire water column from the surface to the sea floor (usually 

27 to 33 m depending on the tide) in 3m intervals. A sampling head was placed at the 

end of the collection hose to increase the precision of sampling. It was constructed of 

two 40.6 by 40.6 cm pieces of sheet metal spaced 5cm apart, with the hose protruding 

through the top piece of metal so that water was drawn laterally from the sides. The 

sampling head could also be detected via a depth sounder to confirm the depth of 

sampling. 

The filtered samples returned to the laboratory for sorting. In 1998, the samples 

were placed in a cold cooler and kept alive. In later years we placed all the samples in 

alcohol to prevent further development of the echinoplutei in the sample. Samples were 

rinsed in the laboratory with 10 pm filtered water and carefully sorted under a dissecting 

scope. Larvae from all echinoderms and decapod crustacean larvae were counted. The 

stages of development were noted for all echinoplutei. 

Results 

Eflects of Wind on Daily Settlement 

In 1998 and 1999, peaks in settlement did not differ between sites on either side 

of the peninsula and both sites in both years had a significant ccrrelation between 

settlement and the longshore wind stress with 24 hr time lag (Figs 3.2 and 3.3). In 2000, 
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Figure 3.2. Average daily longshore wind stress and average daily settlement per 
settlement collector in 1998. Alongshore wind stress has been defined so winds from 75" 
is positive and 255" is negative. Error bars on daily settlement show 2 1 SE. Values 
given in the legend are for correlations between settlement and wind stress (with a 24 hr 
time lag) for each site. 
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Figure 3.3. Average daily lcngshore wind stress and average daily settlement in 1999. 
See Fig. 3.2. for additional details on notation. 



however, wind was not correlated with settlement, and average settlement was generally 

less than half thal seen in previous years (Fig. 3.4). Settlement in 2001 rose to levels 

similar to those observed in 1998 and 1999. The two sites did not always track together 

(Fig. 3.5); thus, the sites exhibited different trends in relation to wind stress. The 

Pemaquid East site had a significant but weak correlation with the wind stress. Pemaquid 

West settlement did not show any correlation with wind stress, and definitely lacked the 

peak in settlement on JD 164 and 165 that the east side showed after an easterly wind. 

Effects of Wind on Depth Settlement and Temperature 

Depth specific temperature data in 2002 from the Hobotemp dataloggers were 

compiled in a contour graph and indicated a general association between the increasing 

temperature at depth and wind stress with a 24 to 48 hr. time lag (Fig. 3.6). Ear!y in June 

the water was relatively cold and only stratified at the surface, but a small positive ( is .  

northeast) wind stress event on JD 155 and 156 caused an increase in water temperature 

to 10 m depth in the following two days. A shift in the wind direction to the southwest 

quickly caused a cooling surface temperature during the next two days. This would be 

expected if a positive wind stress had led to advection of warmer surface water onshore 

("downwelling") and the opposite wind stress forced the warmer waters offshore. This 

trend was repeated after the positive wind events on JD 158 and 159 and on JD 164. A 

large northeaster on JD 167 resulted in a pulse of warm water that reached our deepest 

stations. As the winds relaxed in the following days the depth of warmer water grew 
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Figure 3.4. Average daiiy longshore wind stress and average daily settlement in 2000. 
See Fig. 3.2. for additional details on notation. 
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Figure 3.5. Average daily longshore wind stress and average daily settlement in 2001. 
Arrows and letters correspond with CTD profiles show in Fig. 3.9. See Fig. 3.2. for 
additional details on notation. 
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Figure 3.6. Average daily longshore wind stress and average daily water temperature with 
depth in 2002. A) Mean alongshore wind stress similar to that in Fig. 3.2; B) Mean water 
temperature ("C) over time between the depths of 6 ana 14m. Solid contours are shown 
for every degree. 



The urchin settlement appears to be related to this wind stress and temperature 

dynamic with highly significant correlations between settlement and depth and settlement 

and temperature at depth (Fig. 3.7). Graphs of percent settlement at depth and water 

temperature (time-averaged; see Table 3.1 for statistical analysis) for the individual dates 

exhibited similar trends (Fig. 3.8). Specifically, the first three dates (JD 155, 161, and 

165) indicated that settlement was lower in the coldest waters with these decreases often 

at or below the thermoclines. Settlement on JD 170 exhibited no significant differences 

in depth settlement, and was associated with a warm water mass over the whole depth 

range (also see Fig. 3.6). On JD 175, high deviations were observed in settlement at each 

depth, resulting in no significant differences between depths. A general trend in the data, 

however, suggested that the higher densities of settlers were present at the warmest 

shallow depth. Lastly, on JD 179, with the exception of the 12 m depth. settlement was 

observed to decline with decreasing temperatures. 

Water Mass Temperature Profile 

In 2001, we compared changes in the temperature structure for each of the four 

days with CTD casts (Fig. 3.9) against the longshore wind stress (Fig. 3.5) found a trend 

similar to that observed earlier. That is, on JD 169, after a small negative wind stress 

(promoting "upwelling") the entire water column was relatively cool, with only the near- 

coastal surface waters being above 15°C. On JD 173, after the occurrence of a stronger 

wind causing local upwelling, temperatures appear even colder at the surface (after 

station 5).  Along the shore, the deeper waters were also colder (the 9°C isotherm was at 

12 m vs. 18 m four days earlier). The thermocline appeared to be stronger and deeper 



Table 3.1. One-way ANOVA results comparing average number of urchins per 
settlement plate per depth on each date of study. Asterisk (*) indicates a significant 
difference in the average settlement (at a = 0.05) 

Julian Day Effect SS d f MS F P 

153 Depth 42.672 4 10.668 3.563 0.03 1 * 
Error 44.909 15 2.994 

16 1 Depth 89.342 4 22.335 3.21 1 0.043* 
Error 104.329 15 6.955 

1 165 
Depth 137.729 4 34.432 4.850 
Error 106.487 15 7.099 

O.OIO* 1 
170 Depth 8.559 4 2.139 0.758 0.567 

Error 42.294 15 2.819 

Depth 119.797 4 29.949 1.460 0.263 

I Error 114.397 15 7.626 I 

and was associated with the increasing positive wind stress on that day. In contrast, five 

days later on J 3  178 (a few days after a positive wind stress), warm surface waters over 

17°C extended fully to the shore. This pattern may have been more pronounced a couple 

of days earlier since there had been weak negative wind stress acting on this water mass. 

The subsurface waters along the coast appear to be bulging up towards the surface, 

suggesting the beginning of upwelling. This pattern is more apparent the next day 

(JD179) as cooler waters pushed up along the coast malung the coastal thermocline 

shallower and pushing the warmer surface waters several kilometers offshore. 
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Figure 3.7. Average of total sea urchin settlement per collector and average temperature 
for each depth in June 2002. Correlation statistics describe linear correlation between the 
number of settlers, depth, and temperature. 
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Figure 3.8. Average percent of the total settlement by depth for each collection date (solid 
bars) and average temperature at each depth (dashed line) during the time the collectors 
were in the water. The Julian day the collectors were retrieved is in bold italics by each 
graph. Identical numbers by standard deviation bars indicated no statistical difference 
(using Fisher LSD post-hoc test). For ANOVA results on each date, see Table 3.1. 
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Figure 3.9. Temperature profiles of the water mass off Pemaquid Point perpendicular to 
the coastline. Station numbers correspond to those shown in Fig. 1. Plots are for four 
different days in 2001 as seen in Fig. 5: a) Julian Day 169; B) JD 173, C) JD 178; D) JD 
179. Solid contour lines are labeled for each degree C. 



Lawal Vertical Distribution 

A total of 153 echinoplutei were found during the study (1998 - 2002). Their 

distribution was patchy and they were not dense. Larvae were found between May 8 and 

July 10 (both in 1998), but always in densities c 0.1 echinoplutei 1.' of seawater. They 

were found at all depths to 27 m but never at the bottom. Larvae were also found in 

waters ranging in temperature from 6.6 to 13.9"C. Not all developmental stages of 

echinoplutei were found in the samples. Eight 4- to 6-arm stage plutei (hereafter referred 

to as early stage) were captured in 1998, and the rest of the samples were all late stage 8- 

arm plutei (few) or newly metamorphosed individuals (majority). These newly 

metamorphosed sea urchins were found high in the water column, and usually retained 

the skeletal arm segments of the plutei stage, (Fig. 3.10). We do not believe the 

metamorphosis occurred on our filters (see discussion). 

The depth distnbtltions of the early and late stage echinoplutei were not 

statistically different (Kolmogorov-Smirnov Test, p > 0.10; Fig. 3.11). This could be an 

artifact of the low sample size in the early stage. The two stages were associated with 

different water temperatures (Fig. 3.1 lc), with the earlier stage in water averaging 7.8"C 

and later stages in 11.6"C water. This could be due solely to temporal variations since 

there was not much overlap in the samples and the early stage was found in May when 

the water column was not strongly stratified. Late stage echinoplutei, both competent 

and newly metamorphosed, were more nllmerous at depths c 12 m (Fig. 3.11b) most 

occurring at or above the thermoclme (i.e. in the warmer surface waters). 



Figure 3.10. Photograph of newly metamorphosed sea urchin found in the larval 
samples. Notice larval skeletal rods still attached to the newly formed juvenile. This 
individual was collected from the water column. 
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Figure 3.11. Locations and temperatures where echinoplutei of different stages were 
found. A) Bar diagram indicating the depths where early stage (4- to 6-arm) larvae were 
captured. B) Bar diagram indicating the depths where late stage (8-arm or newly 
metamorphosed) larvae were captured. C) Average water temperature SD) each stage 
was collected from. 



Discussion 

Echinoplutei Stages 

While we did not expect to find or be able to identify blastula or gastrula stages 

in the samples, we did hope to find all the armed stages of echinoplutei. We found only 

eight early 6-arm plutei in 1998, however, and nothing other than competent late stage 

larvae at any other time. We do not know why we did not find earlier stages. It is 

possible there were problems with pressure buildup in the filter system or use of a mesh 

size which was too large for the fragile larvae. To  counter this, we gently spilled the 

water through a 156 pm plankton net. The fact that we found the eight 6-arm plutei in 

good condition under the roughest sampling procedures the first year suggests [hat we 

were not destroying or passing the larvae. Concentrations of sea urchins were low, but 

similar to those found by Towers (1976). It is possible that the earlier stages slmply were 

not present in the area we were sampling, since larvae are often transported large 

distances and life stages can be segregated in time and space (Shanks 1995). 

We also found sea urchin larvae in the water column that had just undergone 

metamorphosis, but we do not believe that the echinoplutei were undergoing 

metamorphosis in our filter system. Firstly, we started preserving the samples in alcohol 

as soon as the collection was complete. Secondly, we ran the pump for less than 10 

minutes on some of the trials but never found a range of metamorphosis stages in the 

samples. Thirdly, we never found any larvae in the bottom sample, and the majority of 

the sea urchins at a depth < 12 m, indicating sea urchins were not being stirred up 

Encountering newly metamorphosed sea urchins in the water column was not 

predicted based on the literature. Burke (1980) described sea urchin tube feet penetrating 



the larval body presumably to sample the substrate. Other studies have suggested a 

number of algal and bacterial benthic species that induced metamorphosis in S. 

droebachiensis (Towers 1976, Pearce and Scheibling 1990, 1991). All this would imply 

that the echinoplutei would be searching for suitable habitat before undergoing 

metamorphosis. Thus we did not expect to encounter newly metamorphosed sea urchins 

in the water column. Metamorphosis in the water column is not unheard of though. 

Thorson (1946) encountered a number of species that had apparently undergone mid- 

water metamorphosis and states that "within the echinoderms this phenomenon seems to 

be rather common." More recently Fenaux and Pedrotti (1988) documented post-larvae 

of five different echinoids, some offshore in the top 30 m of a 2000 m water column. 

How these post-larvae are able to maintain their position in the water column is 

u~known, as is !heir fate. Their abundance in the upper part of the water column 

(perhaps riding pycnocli~es), though, suggests that they can be carried into the coastal 

settlement grounds and still enter the population. 

Relationship Between Advection of Surface Waters and Settlement 

Downwelling events in upwelling areas may be the only way for invertebrate 

larvae to reach the coast for successful settlement (e.g. Wing et al. 1995a, Wing et a!. 

1995b, Miller and Emlet 1997, Botsford 2001). We believe that the wind-driven 

advection of surface waters onshore (i.e. "downwelling") is cntical in facilitating the 

recruitment of the green sea urchin in Maine. Indeed, in three out of four years a positive 

wind stress fiom the northeast was correlated with pulses in settlement. 



In order for this mechanism to work, the water column must be stratified and the 

larvae must be in the upper stratum. Our temperature data suggest that during the time of 

sea urchin settlement, surface waters are generally warm (> 16°C) and can be advected 

onshore by northeast wind events, which is typical of downwelling events (Wing et al. 

1995a, Wing et al. 1995b, Miller and Emlet 1997). These wind events only happen an 

average of two or three times during June when sea urchin settlement is at its peak 

(Lambert and Harris 2000). Thus timing can be crucial to successful settlement. For 

example, the second peak in wind stress on JD 179 1998 (Fig. 3.2) was not effective in 

increasing settlement, probably because there were few larvae left in the water by that 

time. When conditions are optimum, these wind events can lead to major peaks in 

settlement, similar to those observed for ophioroids in Nova Scotia (Balch et al. 1999). 

In 2000, wind events weIe not correlaled with settlement as i11 other years. This 

could have been caused by a lack of water stratification. Temperatures in 2000 were 

colder than in 1999, and the water column did not stratify as dramatically. The Portland 

Buoy recorded an average surface temperature of 14.19 e 0.79) "C for the month June in 

1999, but a temperature of only 12.28 e 1 5 1) "C in 2000. Our average June temperature 

profiles indicate the same trend. Average surface temperatures were 3°C colder in 2000 

(Fig. 3.1 2). More importantly, the average difference between the surface and bottom 

temperatures was only 4.1 e 0.28) "C in 2000 compared to 6.48 e 1.38) "C in 1999. In 

that year there was less chance for thermocline development and a greater chance for 

mixing of larvae in the water column. It is possible that positive wind stresses in 2000 

did advect surface waters inshore, but the larval densities were not any higher in those 

waters than in the resident water mass. 
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Figure 3.12. Average water temperature with depth in June of 1999 dnd 2000, conpiled 
from June larval samples in each year. 

The Pemaquid West site did not correlate wind stress with settlement in 2001. 

This could be due in part to the infrequent sampling obscuring the relationship, but there 

was no peak in settlement on JD 164 and 165. More likely this was caused by direct 

wind forcing rather than Eckrnan transport. The wind during the JD 162 positive wind 

event (Fig. 3.5) was often more from the north northeast and very strong. This would 

force the wind to travel over Muscongus Bay which is shallower than the waters offshore 

of Pemaquid Point. The entire water cclumn of shallow waters tends to be pushed before 

the wind instead of initiating a traditiorial Eckman spiral (Shanks 1995). It is therefore 



possible that winds advected offshore surface waters onshore, but locally pushed the 

larvae onto the east side of the peninsula and away from the west side. Lambert and 

Harris (2000) suggested that sea urchin settlement in York, ME was associated more with 

onshore winds than longshore winds. Direct wind transport has been seen for other 

invertebrate larvae in the region, namely barnacles (Bertness et al. 1996) and lobsters 

(Incze and Wahle 1991). Perhaps the system studied here is more complex and large- 

scale advection is coupled with local direct wind transport, delikering larvae to the 

shallow nursery grounds. 

Larvae must be present in the stratified surface water if downwelling is to 

increase settlement. Late stage, competent larvae were observed at depths < 12m deep in 

the water column. This depth distribution curve matched the settlement depth ctme of 

Harris et al. (1994), which showed a general increase in settlers to 6 - 9 rn with a drop in 

settlement > 13 m Our average temperaiure curve for 1949 shows grezter stratification 

above 12 - 15 m (Fig. 12). Lastly, the fact that the settlement collectors at different 

depths were strongly correlated with average temperature implies that the more time the 

collectors were above the thermocline, the better the supply of larvae. 

We therefore conclude that the longshore winds can affect sea urchin settlement. 

Competent echinoplutei were certainly present in the warmer surface waters. 

Echinoplutei are known to be able to control their vertical distribution in relation to food 

concentration and pycnoclines in laboratory experiments (Metaxas and Young 1998c, b, 

a), but how much control they h a ~ e  in the turbulent ocean remains to be seen. Either 

way, the larvae were in position to be advected onshore to shallow settlement sites once a 

northeast wind created a downwelling eveqt. 



Chapter 4. Habitat complexity and recruitment of the green sea urchin 

Strongylocentrotus droebachiensis in the Gulf of Maine. 

Abstract 

Habitat complexity can impact species and community dynamics in benthic 

systems. We attempted to associate different scales of habitat complexity with the 

distribution and survival of recruiting green sea urchins (Strongylocentrotus 

droebachiensis) in the Gulf of Maine. We examined the importance of micro-complexity 

(smaller than adult sea urchins) created by ledge cracks and crustose coralline algae. We 

also studied the effects of macro-complexity (greater than or equal to adult size) provided 

by fleshy macroalgae and adult sea urchin spine canopies. We determined that juvenile 

S. droebachiens.is are not preferentially found under adults. They are more often 

associated with increases in small scale spatial complexity (i.e. branching cmstose 

corallines, cracks in the granite ledge, etc.), the utilization of which may change as the 

sea urchins grow. We found that habitat complexity also affected settlement of sea 

urchins in coralline dominated communities, but had no impact in fleshy macroalgal 

beds. Post-settlement mortality was not affected by substrate complexity in either 

community. Lastly, we show evidence that adult sea urchins may cannibalize newly 

settled juvenile sea urchins and be a source of mortality rather than refuge. 



Introduction 

Substrate complexity, or heterogeneity, can be important in structuring benthic 

communities, increasing both species abundances and richness (for reviews see Bell et al. 

1991, Kolasa and Pickett 1991). Complexity can provide resources (e.g. space) for niche 

diversification (Schoener 1974), affect circulation which in turn affects supply of food 

and propagules (e.g. Eckman 1983), initiate settlement (e.g. Keough and Downes 1982), 

and protect recruits against disturbance (Woodin 1978). Many recent studies have 

quantified the impacts of habitat structure on benthic organisms, particularly the potential 

refuge afforded from predation (for reviews see Coull and Wells 1983, Nelson and 

Bonsdorff 1990, Bell et al. 1991, Kolasa and Pickett 1991). Studies are revealing that the 

impacts of habitat complexity are dependent on size and research must have a resolution 

appropriate to the organisms being studied (Bell et al. 1991). 

Researchers have hypothesized that substrate con~plexity may be important in tne 

western North Atiantic for the recruitment of the green sea urchin Strongylocentrotus 

droebachiensis. Keats et al. (1985) suggest that the bimodal size frequency seen in 

juvenile green sea urchins may be due to cunner (Tautogolabrus adspersus) predation 

once the urchins outgrow the refuge of the branching crustose coralline alga 

Lithothamnion glaciale, a theory reiterated Ojeda and Dearborn (1991). Himmelman 

(1986) and Scheibling and Hamm (1991) noticed higher juvenile densities (and possibly 

survival) in habitats with small interstices as refuge . Witman (1985) concluded that 

subtidal clumps of the horse mussel Modiolus modidus are also an important refuge from 

predators for S. droebachiensis. Alternatively, McNaught (1999) determined that 



increased complexity in macroalgal beds actually harbors sea urchin predators and 

decreases the survival of newly recruited sea urchins. 

Here, we report on the effects of multiple scales of habitat complexity on newly 

settled and small juvenile sea urchins. We chose to test the hypothesis that small sea 

urchins utilize interstices of small habitats (Keats et al. 1985, Ojeda and Dearborn 1991), 

examining the micro-complexity structure formed by crustose coralline algae and small 

cracks in the rocky ledge and its effect on sea urchin distribution and survival. This 

micro-complexity is on a scale smaller then the adult S. droebachiensis, impacting the 

smallest of sea urchins. 

We also examined larger components of habitat complexity. This macro- 

complexity scale was as large or larger than the adult sea urchins and included 

~nacroalgal beds, vertical walls, and the spine canopy of the adult sea urchins. Spine 

canopy effects were added because Tegner and Dayton (1977) observed that juvenile 

Strongylocentrotus frunciscanus sea urchins in California were most often found under 

the spines of adult congeners. Breen et al. (1985) later confirmed this experimentally. 

This association is thought to afford protection from predators andlor enhance food 

resources for the juveniles (Tegner and Dayton 1977, Duggins 1981, Breen et al. 1985), 

both concepts of which have been recently confirmed experimentally (Nishizaki and 

Ackerman 200 1). 

Lastly, we investigated the possibility of incidental cannibalism by adult sea 

urchins, and explored the implications this might have on micro-habitat use. McNaught 

(1999) identified coralline communities as better settlement grounds for sea urchins, but 

still found up to 90% mortality in the first year in these habitats. The potential for 



cannibalism as an agent of this mortality is great since coralline communities are usually 

characterized by high densities of sea urchins. 

Materials and Methods 

Experiments on Juvenile Sea Urchins 

Laboratory experiments were conducted at the Darling Marine Center, Walpole, 

Maine in August 2001, to determine whether juvenile green sea urchins seek the spine 

canopy of adults. Three tanks with four containment areas at the center were constructed 

for the experiments (Fig. 4.1). Three treatments with different habitat options in the 

containment were used: four adult sea urchins (- 50 mm spine canopy width - SCW), 

four similarly sized rocks, and two sea urchins with two rocks. Both the adult sea urchins 

and socks were held in place with four thin, clear Plexiglas "fingers" that bracketed the 

aboral side of the adult sea urchins but did not reach the bottom of the tank. A random 

sample of 20 juvenile sea urchins 3 - 30 mm in test diameter (TD) was released into the 

middle of the tank. After 24 hours, we noted the number of juveniles in each of six 

locations (Fig. 4.1): 1) under adult sea urchins, 2) under rocks, 3) in the center of the tank 

between the containment areas, 4) in the corners of the tank (within one body length of 

the corner formed by the wall), 5) along the edge of the tank (outside the containment 

areas but outside of the corner zone), and 6) on the walls of the tank. Each juvenile was 

only used once, each trial run comprised one replicate of each treatment, and the 

treatments were rotated among tanks for each new trial. Six replicates of each treatment 

were run over six days. 
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Figure 4.1. Diagram of the experimental aquaria used for testing the importance of the 
adult spine canopy in the green sea urchin. The dark line around the outside symbolizes 
the wall of the tank and the only hard boundary in the figure. The circles ("Canopy") 
indjcate where the adult sea urchins or controls (rocks) were placed. The "Center" was 
the area of the aquarium bottom between the urchinlrock stations. The "Edge" is the area 
outside the archdrock stations but not within one body length (of the juvenile urchins) 
of the aquaria walls. The "Corner" was the perimeter of the tank one juvenile body width 
wide where the bottom of the aquarium met one or more of the sides. 



We also conducted field surveys to determine if wild juvenile S. droebachiensis 

were more common under the spine canopy of adults than in the open. These surveys 

were conducted at Pumpkin Cove (N 43" 50', W 69" 31') on the east coast of Pemaquid 

Point, Maine. We performed these surveys in an urchin dominated crustose coralline 

community at - 10 m depth. To standardize the area quantified, we created a template 

with a 50 mm diameter circular cutout. This template was placed over a sea urchin with a 

50 mm SCW to define the edge of the spine canopy. The adult sea urchin was carefully 

removed and inspected for juvenile sea urchins (c  30 mm) among the interstices of the 

adult spines. We then counted the juvenile sea urchins in the template (i.e. that were 

under the adult) and measured them into 5 mm size categories. We also quantified the 

substrate type where juveniles were found into three categories, based on habitat 

complexity. The most complex of these micro-habitats were the cracks in the ledge 

(crack). Cracks were generally "deep" with a height:width rdtio of at least 5:l.  

Branching coralline crusts (Lithothamnion sp.) afforded the next highest level of physical 

complexity, with interstices averaging 2 x 2mm (1:l ratio; R.S. Steneck, pers. comm.). 

The final category was flat substrate (either smooth rock or flat corallines such as 

Phymatolithon laevigatum and Clathomorphum circumscriptum) with a zero height:width 

ratio. We also quantified the available substrate in the quadrat (percent cover) using 

these same three categories. Finally, for each adult sea urchin sampled, we placed the 

template on adjacent substrate without an adult, counted and measured the juveniles, and 

quantified the habitat complexity. 



Experiments with Newly Settled Young of the Year (YOY) Sea Urchins 

The following experiments were all performed on newly settled sea urchins to 

determine preferential use of different habitat complexities. These young of the year 

(YOY) sea urchins were generally < 2mm TD. All of these urchins were collected from 

the field using passive collectors ( ~ s t r o t u r f ~  panels) and kept in containers with 

constant flowing seawater and an air source. 

Ceramic plates were used to determine the effect of habitat complexity on 

settlement and post-settlement recruitment in situ. These plates were 8.5 x 18 cm and 

constructed with three different surface complexities: high, low, and none or flat (Fig. 

4.2). we attempted to duplicate the interstices of branching Lithothamnion sp. cora!line 

crusts with the high-complexity  plate.^, using branch interstices - 2 x 2 mm. These plates 

had an average total surface area (including irregularities) to dimensional surface area 

(simple length x width of the plate) ratio of 1.59:l. The flat plates (without micro- 

complexity), mimiclung the smoother P. laevigatum and C. circumscriptum coralline 

crusts, had a surface area ratio of 1: 1. The low-complexity plates represented an 

intermediate complexity. These plates had a corrugated pattern of complexity with 

interstices approximately 3mm by 16mm and had a surface area ratio of 1.03: 1. We 

placed 20 of each plate type in an urchin-dominated ccralline community on 22 May 

2002. Twenty high-complexity and twenty flat plates were also placed in an adjacent 

fleshy macroalgal bed dominated by the kelp Laminaria longicruris. All the plates were 

plxed 1rl6m of water, attached to bolts epoxied to the substrate, and allowed to rest 

directly on 
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Figure 4 2 Cross sections of the three different complexity plates. Note that the 
drawings are not to scale and only change in rugosity. 



the bottom. Since settlement of S. droebachiensis occurs in late May and June (Harris et 

al. 1994, McNaught 1999, Chapt. 3), we picked up half the plates (ten from each 

treatment) five weeks later on 26 June 2002 (referred to as early postsettlement). The 

remaining plates were retrieved 12 weeks later on 12 August 2002 to determine the 

effects of differing complexity on post-settlement mortality (also referred to as 

recruitment plates). Plates were soaked in magnesium chloride to relax the urchins and 

washed with 10 pm filtered seawater. The water was passed through a 300pm sieve 

(McNaught 1999, Chapt. 3), and we then quantified the abundance and size distribution 

of YOY sea urchins under a dissecting microscope. 

We conducted laboratory experiments using ceramic plates constructed using the 

same models of complexity. One experiment was designed to determine if YOY ses 

urchws would choose a particular habitat co~nplexity type. Circcla- plates - 1  3 cm dia. 

were divided into three equal sections. Each section was one of the lhree complexities 

(flat, low, and high). Ten YOY sea urchins were placed in thp center of the plate (where 

all three complexities joined) and left for three hours. At the end of the trial, the number 

of sea urchins on each complexity and on the vertical wall of the container was counted. 

We replicated this experiment ten times over two days (31 October and 1 November 

2002). 

A second experiment was conducted at the same time to determine the potential 

for predation on YOY sea urchins by adults. Larger (35 x 55cm) ceramic plates of high 

complexity (Lithothamnion mimic) and zero complexity (flat) were constructed and 

placed in aquaria. Ten measured YOY sea urchins were placed in the center of the tank 

with five adult sea urchins (at least 50 mm SCD.) and left for 24 hours. After 24 hours 



all the remaining YOY urchins were collected, counted, and measured. Trials of the two 

complexities were run concurrently and replicated ten times. Controls without adult sea 

urchins were also run with each complexity type. 

Results 

Juvenile Sea Urchins 

In laboratory tests juvenile sea urchins were rarely found under adult spine 

canopies (Fig. 4.3). They preferred to be under rocks when available, on the walls of the 

tank, or in the comers, rather than in out in the open or under adults (Table 4.1, Fig. 4.3). 

The results were consistent between treatments (Table 4.1), and definitely did not support 

the idea of a spine canopy effect in S. droebachiensis. 

In the field surveys under the adult spine canopy and ir, the open, a total of 394 

juvenile sea urchins were counted in 75 paired samples. These data show that 

significantly more S. droebachiensis juveniles were found in the open (1.8 juveniles per 

quadrat 2 0.21 SD) than under adult spine canopies (1.1 juv. 2 0.15; t-test: t = -2.87, df = 

236, p = 0.0044). Additionally, there was no difference in juvenile size frequency 

distributions from either location (Fig. 4.4). 

Juvenile sea urchins, both under the spine canopy of adults and not, were more 

likely to be found on cracks, even though cracks were the least represented habitat type in 

our surveys (Fig. 4.5). Flat corallines, which were by far the most abundant substrate 

avail-able, were used the least when juveniles were not under the adult spine canopy (Fig. 
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Figure 4.3. Locations of juvenile sea urchins when given a choice of habitats and cover. 
Data are presented as the average number & SD) of 20 juvenile seas urchins after 24 
hours in the experimental aquaria. Experiment consisted of three treatments: 4 adult sea 
urchins, 4 rocks, and 2 sea urchins / 2 rocks. Lines indicate not significant difference 
between groups (based on LSD post hoc test). Locations are defined as follows and as in 
Fig. 1: - 

Center -juvenile sea urchins in the area between the containment areas (for rocks and 
adult sea urchins) 

Edge -juvenile sea urchins in the area outside the containment areas but not in the 
corner 

Spine canopy -juvenile sea urchins under the spines of the adult sea urchins 
Rock -juvenile sea urchins under the rocks 
Comer - juvenile sea urchin within one body length of where the aquaria floor met 

the side 
Wall -juvenile sea urchins on the vertical surface of the aquaria 
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Figure 4.4. Size frequency of juvenile sea urchins found under the adult spine canopy in 
the wild vs. those exposed. The bars represent the 5mm size categories of sea urchin 
juveniles. The two curves are not statistically different based on a Kolmogorov-Smimov 
Test (n=390, p > 0.10). 
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Figure 4.5. Comparison between substrate chosen by juvenile sea urchins and the 
available substrate in the quadrats. A) Proportion of the juvenile sea urchins found on 
each habitat type (see text for explanation). Juveniles are separated as those found under 
an adult urchin spine canopy and those found in the open. B) Percent cover of each 
habitat type from all quadrats. 



Table 4.1. ANOVA results for laboratory experiments where juvenile sea urchins could 
choose location within the aquaria. Three habitat treatments were considered (four adult 
sea urchins, four rocks, two sea urchins and two rocks). Locations are described in the 
text and included the under the adult sea urchin spines, under the rocks, or the aquaria 
center, edge, comers, or walls. All data were square-root transformed and correspond 
with Fig. 4.3. 

A. Effects of location for the combined treatment 

Location 

Error 

B. Effects of treatment and location for all treatments 

I df SS MS 

The size of the juvenile sea urchins on each substrate type was related to the 

potential interstitial space of the habitat. Size frequency distributions for juveniles on 

each of the substrate types (Fig. 4.6) indicated smaller urchins were found in 

Lithothamnion (mode = 0 - 5 mm), 5 - 10 mm sea urchin were more common in cracks, 

and the largest juveniles (> 1Omm) were often on flat coralline algae, although only the 

urchins on flat substrate exhibited a statistical difference in mean size (Table 4.2). 

Treatment 

Location 

Treatment*Location 

Error 

Young of the Year (YOY) Sea Urchins 

In field experiments, macro-complexity in the habitat (i.e. macroalgal cover) had 

an effect on sea urchin YOY postsettlement success and altered the importance of the 

2 0.07 0.03 0.1 19 0.88 

5 94.56 18.91 63.52 < 0.0001*** 

10 14.73 I .47 4.947 < 0.0001*** 

90 26.79 0.29 



Percent 
- t o w ~ u l m - 4  A 

0 0 0 0 0 0 0 3 0 0  

of sea urchin juveniles 
t o w ~ u l m - 4  - t o w ~ u l m - 4  
0 0 0 0 0 0 0 0 0 0 0 0 0 0  



Table 4.2. Multiple Kolmogorov-Smirnov tests on the size-frequency distributions for 
sea urchins found on three different substrate types (Lithothamnion, cracks, and flat 
corallines). Data are based on those presented in Fig. 4.6. We calculated a significant a 
= 0.0167 by applying the Dunn-Bonferroni procedure to control for Type I errors (Winer 
et al.). 

Substrate 
Lithothamnion 

Crack 

Flat 

Comparison 

Lithothamnion x Crack 

Lithothamnion x Hat 

Crack x Flat 

Mean (5 SD) rnrn n 
0.893 (0.418) 103 

0.885 (0.316) 100 

1.175 (0.422) 100 

p value 

p >0.1 

p < 0.001*** 

p < 0.001*** 

habitat micro-complexity. The average number of sea urchins on the early postsettlement 

plates was greater in the coralline community than in the macroalgal bed (Fig. 4.7a). 

Additionally, within the coralline community, there were higher YOY numbers on the 

plates with the higher complexity (i.e. Lithothamnion mimic) when compared to the flat 

plates but no difference could be detected between micro-complexity types in the 

macroalgal bed (Fig. 4.7a, Table 4.3a.). 

This pattern did not hold for the late postsettlement YOY collectors retrieved on 

12 August 2002. Plates in the coralline community still had significantly more YOY 

urchins, but there was no longer a difference between plate complexities (Fig. 4.7b, Table 

4.3b). Differences between the habitat types were probably resulted from the initial 

settlement since all treatments averaged - 50% YOY survival during the 48 days the 
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Figure 4.7. Results from the complexity plates (both high complexity and flat plates) 
placed at Pumpkin Cove inside an urchin-dominated coralline community and a fleshy 
macroalgal bed. Continuous lines above the columns indicate no statistical difference 
based on Fisher's LSD post hoc test (on square-root transformed data). A) Average 
number of sea urchin settlers found on the plates after five weeks (early postsettlement; 
retrieved on 26 June 2002). B) Average number of urchins per plate on plates after 12 
weeks (late postsettlement; retrieved 12 August 2002). C) Average survival of sea urchin 
juveniles to 12 August 2002. 



Table 4.3. ANOVA results for the habitat complexity plate experiment corresponding 
with Fig. 4.7. The effects are complexity (high or none) and habitat (coralline 
community or algal bed). All data were square-root transformed. A) Average number of 
sea urchin settlers found on the plates after five weeks (retrieved on 26 June 2002). B) 
Average percent of sea urchin juveniles surviving to 12 August 2002. 

A. Settlement 

Effect 

Complexity 

Habitat 

Complexity * Habitat 

Error 

B. Recruitment 

Effect 

Complexity 

Habitat 

Complexity * Habitat 

Error 

plates were in the field (Fig. 4.7c, Table 4.3b). Variability was very high in the samples, 

especially in the macroalgal bed, and may have obscurred real trends in the data. 

In the laboratory, the sea urchin YOY did not choose the higher micro-complexity 

when given a choice of substrates (Fig. 4.8). The average number of urchins using each 

degree of complexity was similar in all cases, but the highest complexity (Lithothamnion 

mimic) attracted the fewest urchins. There was no consistent trend over the micro- 

complexity gradient (Fig. 4.8, Table 4.4). The highest numbers of YOY urchins were 

found on the wall of the aquaria, which was similar to the results of the spine canopy 

experiment using larger juveniles. 



high low none wall 

Degree of habitat complexity 

Figure 4.8. Average number of young of the year sea urchins (2 SD) found on each of the 
habitat complexity types (high, low, and nonelflat) in laboratory experiments. "Wall" 
indicates sea urchins were found on the vertical wall of the aquaria (not part of the 
original microcomplexity experiment). Identical letters above error bars indicate no 
statistical difference based on a Fisher's LSD post hoc test (on square root-transformed 
data). 



Table 4.4. ANOVA table for laboratory experiment to determine the habitat complexity 
preference of YOY sea urchins (data shown in Fig. 9). 

Effect I SS d f MS F P 

Complexity 

Error 

Results of our last experiment suggested that YOY urchins may be susceptible to 

cannibalism by larger adults. In the 10 trials conducted, no urchins were missing in the 

treatments with the high complexity or the controls without adult sea urchins (Fig. 4.9). 

Four flat substrate trials, however, were missing one or two urchins. A Mann-Whitney U 

test revealed a significant difference between the two habitat complexitjes (Fig. 4.9). 

Discussion 

Our data suggest that habitat heterogeneity does impact the distribution of sea 

urchins at different scales. In the wild, juvenile sea urchins were more likely to find, or 

persist in, areas of higher micro-complexity like cracks, although use of this micro- 

complexity appeared to be dependent on the size of the sea urchin and the interstitial 

spaces of the benthos. This would imply that the Lithothamnion provides nursery 

grounds for smaller sea urchins as suggested by Keats et al. (1985) and Himmelman 

(1986). Our laboratory experiments did not indicate that the YOY actively choose these 

sites, thus the distribution in nature may be due to differential survival; i.e. the sea 

xchins are found in all habitats but have lower mortality in sites with higher micro- 

complexity. The sea urchins probably outgrow the interstices of the Lithothamnion and 



None High 

Substrate complexity 

Figure 4.9. Average number of surviving (initial = 10) YOY sea urchins & SD) in each 
degree of substrate complexity in laboratory experiments with adult sea urchins as a 
potential predator. No YOY sea urchins were lost in control treatments without adult sea 
urchins. Averages are statistically different between the substrates (z = 2.169, p = 0.03, 
Mann-Whitney U Test) 



move to areas with more space, like cracks in the ledge. Eventually the juvenile sea 

urchins either outgrow the cracks or, more likely, their increased size offers some 

protection from predation, and more can move about on the areas with very little micro- 

complexity. Therefore microhabitat use is probably dependent on size and susceptibility 

to predation and can become a bottleneck determining population structure (Himmelman 

1986, Scheibling and Hamm 1991). 

These experiments do not show if the initial selection of micro-complexity is due 

to differential settlement or survival. Early postsettlement of sea urchins in coralline 

communities was greater on the plates with more complexity than on the flat plates (Fig 

8a) It is possible that the increased structural complexity changed local hydrodynamics, 

therefore improving settlement (Eckrnan 1983, Wethey 1986). Alternatively, it is also 

possible that during the time settlers were on the plate post-settlement mortality could 

have differed for the various complexities. The higher complexity plates could have 

afforded an early protection from predation for the settlers, especially predation from fish 

such as cunner. Predation from adult urchins (most likely incidental ingestion) was also 

possible since the plates were intentionally placed flush to the substrate, and substrate 

complexity was shown to protect juvenile urchins from cannibalism. The increased 

complexity could also have allowed better purchase and protection for the juvenile 

urchins during the storms encountered during the month of June (see Chapt. 3). 

Additionally, various objects such as lobster traps could have abraded the plates, and had 

a greater effect on the flat plates where there was no place to hide. 

Results from the second late postsettlement plates would suggest that differences 

in the settlement plates are due primarily to larval delivery mechanisms rather than 



differential YOY mortality. There were no significant differences in post-settlement 

mortality on these plates for the remainder of the summer (Fig. 8b). Rates of mortality 

could have changed during the two trials, however, in two possible ways. First, if the 

trend of higher settlement on higher micro-complexity was due to size dependent 

mortality (e.g. smaller sea urchins have a reduced ability to adhere during a storm) we 

would expect to see a shift in mortality later in the summer as the settlers grow (i.e. 

higher mortality on the smallest sea urchins, lower rates later on larger YOY). Second, if 

the agent of mortality changes and is not hindered by increased habitat complexity, 

changes in the survival rates might occur. Until now, we have mostly considered larger 

predators such as cunner (Keats et al. 1985, Ojeda and Dearborn 1991) and large urchins 

that would have problems getting into the smaller spaces of more complex habitats. 

Mchaught (1999), however, found small, newly-settled crabs (Hyas araneus and Cancer 

irroratus) were potentially important predators on settling sea urchins. These crabs 

settled later in the summer after the first round of plates had been picked up (Palma et al. 

1998). These small predators are appropriately sized to exploit many of the small refuges 

larger predators would have difficulty accessing. Therefore, rates of mortality could 

become equal between substrates of different micro-complexity. 

Larger scales of heterogeneity (macro-complexity) also proved to be important to 

young sea urchins. Macroalgal beds showed significantly lower settlement overall, a 

trend also observed by Balch et al. (1998) but contrary to other studies (Harris and 

Chester 1996, McNaught 1999). This may be due to the baffling effects of the algal bed. 

Many have suggested that kelp beds may slow water and facilitate the settlement of 

invertebrates on the edges of the bed, effectively filtering the interior of the kelp bed of 



larvae (Eckrnan 1983, Jackson and Winant 1983, Jackson 1986, 1998). Lower settlement 

numbers in the algal beds may also be due to an increase in potential predators. Adult 

cunner are more numerous in Gulf of Maine algal beds (Levin et al. 1997), and fish 

recruitment may be dependent upon increased habitat complexity provided by the 

macroalgae (Levin 1991). Likewise, micropredators such as small crabs and amphipods 

may use the algal matrix of macroalgal beds to support higher densities (Hacker and 

Steneck 1990, McNaught 1999). Ironically, this larger-scale structure of the algae may 

overgrow the beneficial micro-scale habitat complexity that apparently facilitates sea 

urchin settlement in coralline communities (but not in the macroalgal bed; see Fig. 7a). 

Macro-complexity afforded by adult spine canopies is not important juvenile 

habitat for S. droebachiensis. Fewer j~veniles were found under adults than in the open, 

and this was the case for all sizes of juveniles. In fad. the area under adults was virtually 

the ieast likely place for juveniles in the laboratory, md a much lower percentage of the 

juveniles were found there than would have been expected from the field surveys. The 

field surveys included motile adults who may have moved around more than our snapshot 

of a survey could predict. Therefore juveniles could have found themselves 

unintentionally under adults when they obviously would not have chosen that site on their 

own (according to laboratory experiments; Fig. 6). Additionally, beneficial spine canopy 

effects are probably only seen when the adult sea urchins are basically sedentary (Day 

and Branch 2002), which is probably not the case in S. droebachiensis coralline 

communities (Harrold and Pearse 1987). 

Urchins of all sizes appear to be drawn to cracks and comers In the substrate 

(Vadas et al. 1986, J. Vavrinec pers. obs.); thus, the higher proportion of juveniles found 



in the field beneath adults (compared to laboratory experiments) could be due to adult 

movement rather than juvenile behavior. Both life stages could be drawn to the same 

complexity on the bottom and end up together by chance. It is interesting that there is a 

higher percent of urchins on flat (low complexity) corallines under the spine canopy than 

in the open. Perhaps some of the juveniles perceive the adults as structure and are less 

likely to seek out other refuges. It would be ironic, however, if this perceived refuge is 

also a potentially hostile environment where adult urchins cannibalize the young. 

It would also appear that given a choice, juveniles prefer vertical surfaces or hard 

angles. In all laboratory experiments, juveniles were observed quickly mobing to the 

sides of the aquaria. This behavior was also observed by Vadas et al. (1986) and 

Scheibling and Hamm (1991). The desire towedge into a comer may explain the 

unexpected results when YOY did not choose more complex habitats. None of our 

complexity plates had hard angles; the juveniles may have simply traversed the substrate 

in search of a crack (negative vertical surface), a corner, or a wall. In a large coralline 

community this behavior may be a flight response to decrease the potential of predation 

from adult conspecifics and decapods (Scheibling and Hamm 1991), or it may be an 

artifact to the laboratory experiments since such vertical surfaces are rarer on natural 

ledges (Vadas et al. 1986). 

In conclusion, habitat complexity may have varied effects on the recruitment of S. 

droebachiensis in the Gulf of Maine. Small scale micro-complexity definitely appears to 

act as nursery habitat, especially for smaller juveniles. As the juveniles grow, they are 

either excluded from these areas or attain a partial refuge in size and can becomc more 

mobile. Large scale macro-complexity may be beneficial when referring to large vertical 



surfaces, but is probably detrimental when in the form of adult sea urchins (potential 

predators) or fleshy macroalgae (probably harbors large populations of predators). 
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