20 research outputs found

    The Use of Flagella and Motility for Plant Colonization and Fitness by Different Strains of the Foodborne Pathogen Listeria monocytogenes

    Get PDF
    The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases

    MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence

    Get PDF
    The foodborne pathogen Listeria monocytogenes (Lm) causes invasive infection in susceptible ani- mals and humans. To survive and proliferate within hosts, this facultative intracellular pathogen tightly coordinates the expression of a complex regulatory network that controls the expression of virulence fac- tors. Here, we identified and characterized MouR, a novel virulence regulator of Lm. Through RNA-seq transcriptomic analysis, we determined the MouR regulon and demonstrated how MouR positively con- trols the expression of the Agr quorum sensing sys- tem (agrBDCA) of Lm. The MouR three-dimensional structure revealed a dimeric DNA-binding transcrip- tion factor belonging to the VanR class of the GntR superfamily of regulatory proteins. We also showed that by directly binding to the agr promoter region, MouR ultimately modulates chitinase activity and biofilm formation. Importantly, we demonstrated by in vitro cell invasion assays and in vivo mice infec- tions the role of MouR in Lm virulence.Peer reviewe

    Formation of biofilms on stainless steel by Pseudomonas fluorescens and Listeria monocytogenes

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN032686 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore