4 research outputs found

    Substituted dipyridophenazine complexes of Cr(III): synthesis, enantiomeric resolution and binding interactions with calf thymus DNA

    Get PDF
    [Cr(phen)2(X2dppz)]3+ {X = H, Me, or F} have been synthesised, characterised, and chromatographically resolved into their constituent Δ and Λ enantiomers. The DNA-binding interactions of each of the racemic complexes were investigated, with the results of linear dichroism, thermal denaturation, and emission quenching studies indicative of intercalative binding to CT-DNA with a significant electrostatic contribution. UV/Vis absorption titrations suggest strong DNA binding by each of the racemic complexes, with the methylated analogue [Cr(phen)2(Me 2dppz)]3+ exhibiting the largest equilibrium binding constant. Emission quenching and UV-Vis titrations of the enantiomers of [Cr(phen)2(dppz)]3+ imply similar binding affinities for the Δ and Λ isomers, although significant differences between the circular dichroism spectra of the enantiomers in the presence of DNA connote differences in binding orientation and/or conformation between the two

    Excited state behaviour of substituted dipyridophenazine Cr(III) complexes in the presence of nucleic acids

    No full text
    The photophysics and photochemistry of [Cr(phen)2(dppz)]3+ and its 11,12-substituted derivatives [Cr(phen)2(X2dppz)]3+ {X = Me or F} have been studied in the presence of purine nucleotides or DNA using steady state and time-resolved absorption and luminescence spectroscopy. 5'-Adenosine monophosphate (5'-AMP) shows only a weak interaction with the excited states of each complex. By contrast they are efficiently quenched by 5'-guanosine monophosphate (5'-GMP), consistent with photo-induced electron transfer. Laser flash photolysis spectroscopy in the presence of 5'--GMP suggests that both forward and back electron-transfers are rapid. All complexes also display a strong affinity for DNA and evidence for both static and dynamic quenching mechanisms is provided.AMS. No Keywords
    corecore