20 research outputs found

    Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis

    Get PDF
    Long noncoding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in humans and the mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during vertebrate embryogenesis has been elusive. To identify lncRNAs with potential functions in vertebrate embryogenesis, we performed a time-series of RNA-seq experiments at eight stages during early zebrafish development. We reconstructed 56,535 high-confidence transcripts in 28,912 loci, recovering the vast majority of expressed RefSeq transcripts while identifying thousands of novel isoforms and expressed loci. We defined a stringent set of 1133 noncoding multi-exonic transcripts expressed during embryogenesis. These include long intergenic ncRNAs (lincRNAs), intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, and precursors for small RNAs (sRNAs). Zebrafish lncRNAs share many of the characteristics of their mammalian counterparts: relatively short length, low exon number, low expression, and conservation levels comparable to that of introns. Subsets of lncRNAs carry chromatin signatures characteristic of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than are protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first systematic identification of lncRNAs in a vertebrate embryo and forms the foundation for future genetic, genomic, and evolutionary studies.National Human Genome Research Institute (U.S.) (Grant 1RO1HG005111-01

    Automated detection and quantification of single RNAs at cellular resolution in zebrafish embryos.

    Get PDF
    Analysis of differential gene expression is crucial for the study of cell fate and behavior during embryonic development. However, automated methods for the sensitive detection and quantification of RNAs at cellular resolution in embryos are lacking. With the advent of single-molecule fluorescence in situ hybridization (smFISH), gene expression can be analyzed at single-molecule resolution. However, the limited availability of protocols for smFISH in embryos and the lack of efficient image analysis pipelines have hampered quantification at the (sub)cellular level in complex samples such as tissues and embryos. Here, we present a protocol for smFISH on zebrafish embryo sections in combination with an image analysis pipeline for automated transcript detection and cell segmentation. We use this strategy to quantify gene expression differences between different cell types and identify differences in subcellular transcript localization between genes. The combination of our smFISH protocol and custom-made, freely available, analysis pipeline will enable researchers to fully exploit the benefits of quantitative transcript analysis at cellular and subcellular resolution in tissues and embryos

    Chromatin signature of embryonic pluripotency is established during genome activation

    Get PDF
    available in PMC 2011 April 8.After fertilization the embryonic genome is inactive until transcription is initiated during the maternal–zygotic transition. This transition coincides with the formation of pluripotent cells, which in mammals can be used to generate embryonic stem cells. To study the changes in chromatin structure that accompany pluripotency and genome activation, we mapped the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal–zygotic transition in zebrafish. Histone H3 lysine 27 trimethylation (H3K27me3), which is repressive, and H3K4me3, which is activating, were not detected before the transition. After genome activation, more than 80% of genes were marked by H3K4me3, including many inactive developmental regulatory genes that were also marked by H3K27me3. Sequential chromatin immunoprecipitation demonstrated that the same promoter regions had both trimethylation marks. Such bivalent chromatin domains also exist in embryonic stem cells and are thought to poise genes for activation while keeping them repressed. Furthermore, we found many inactive genes that were uniquely marked by H3K4me3. Despite this activating modification, these monovalent genes were neither expressed nor stably bound by RNA polymerase II. Inspection of published data sets revealed similar monovalent domains in embryonic stem cells. Moreover, H3K4me3 marks could form in the absence of both sequence-specific transcriptional activators and stable association of RNA polymerase II, as indicated by the analysis of an inducible transgene. These results indicate that bivalent and monovalent domains might poise embryonic genes for activation and that the chromatin profile associated with pluripotency is established during the maternal–zygotic transition.National Institutes of Health (U.S.) (grant 1R01 HG004069)National Institutes of Health (U.S.) (grant 5R01 GM56211)Human Frontier Science Program (Strasbourg, France) (LT-00090/2007)European Molecular Biology Organization (fellowship

    Bivalent histone modifications in early embryogenesis

    No full text
    Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) mark lineage control genes in ES cells and zebrafish blastomeres. Such bivalent domains have garnered attention because the H3K27me3 mark might help repress lineage-regulatory genes during pluripotency while the H3K4me3 mark could poise genes for activation upon differentiation. Despite the prominence of the bivalent domain concept, studies in other model organisms have questioned its universal nature, and the function of bivalent domains has remained unclear. Histone marks are also associated with developmental regulatory genes in sperm. These observations have raised the possibility that specific histone modification patterns might persist from parent to offspring, but it is unclear whether histone marks are inherited or formed de novo. Here, we review the potential roles of H3K4me3 and H3K27me3 marks in embryos and ES cells and discuss how histone marks might be established, maintained and resolved during embryonic development

    Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation

    Get PDF
    In many organisms, early embryonic development is driven by maternally provided factors until the controlled onset of transcription during zygotic genome activation. The regulation of chromatin accessibility and its relationship to gene activity during this transition remain poorly understood. Here, we generated chromatin accessibility maps with ATAC-seq from genome activation until the onset of lineage specification. During this period, chromatin accessibility increases at regulatory elements. This increase is independent of RNA polymerase II-mediated transcription, with the exception of the hypertranscribed miR-430 locus. Instead, accessibility often precedes the transcription of associated genes. Loss of the maternal transcription factors Pou5f3, Sox19b, and Nanog, which are known to be required for zebrafish genome activation, results in decreased accessibility at regulatory elements. Importantly, the accessibility of regulatory regions, especially when established by Pou5f3, Sox19b and Nanog, is predictive for future transcription. Our results show that the maternally provided transcription factors Pou5f3, Sox19b, and Nanog open up chromatin and prime genes for activity during zygotic genome activation in zebrafish

    Transcription organizes euchromatin via microphase separation

    Get PDF
    In eukaryotes, DNA is packed inside the cell nucleus in the form of chromatin, which consistsof DNA, proteins such as histones, and RNA. Euchromatin, which is permissive for tran-scription, is spatially organized into transcriptionally inactive domains interspersed withpockets of transcriptional activity. While transcription and RNA have been implicated ineuchromatin organization, it remains unclear how their interplay forms and maintains tran-scription pockets. Here we combine theory and experiment to analyze the dynamics ofeuchromatin organization as pluripotent zebrafish cells exit mitosis and begin transcription.We show that accumulation of RNA induces formation of transcription pockets which dis-place transcriptionally inactive chromatin. We propose that the accumulating RNA recruitsRNA-binding proteins that together tend to separate from transcriptionally inactive euchro-matin. Full phase separation is prevented because RNA remains tethered to transcribedeuchromatin through RNA polymerases. Instead, smaller scale microphases emerge that donot grow further and form the typical pattern of euchromatin organizatio
    corecore