11 research outputs found

    Seeing 3D surfaces: neural stimulation, learning and masking

    Get PDF
    In the present dissertation, I assessed the visual hierarchy stages that support the visual perception of three-dimensional (3D) surfaces. In the first experimental chapter, I used fMRI-guided rTMS to probe the cortical areas involved in the perception of slanted surfaces. Results hint at a functional contribution of the dorso-parietal visual stream (posterior parietal cortex; PPC) to slant estimation, however, further work is needed to fully understand the nature of its involvement. I then showed that fMRI-guided rTMS-induced disruption of the ventral stream (area LO) eliminates the facilitation observed, in 3D surface discrimination, when disparity and motion cues congruently inform depth. This finding indicates that LO encodes signals for the integration of depth cues. Then, I showed rTMS evidence that disparity and orientation signal-in-noise discriminations causally relate to PPC’s function. Interestingly, this relation diminishes after training on a visual feature other than the one employed during rTMS testing. This finding indicates that training, even across visual features, can influence neuronal organization. Finally, I used backward masking to show that brightness masking incorporates the 3D information of disparity-defined slant. This finding suggests that brightness estimation is mediated by mid-level neuronal mechanisms, at a cortical stage where binocular signals have been combined

    Brightness masking is modulated by disparity structure.

    Get PDF
    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted.This project was supported by fellowships to H.B. from the Japan Society for the Promotion of Science, JSPS KAKENHI (26870911) and A.E.W. from the Wellcome Trust (095183/Z/10/Z).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.visres.2015.02.01

    The effects of categorical and linguistic adaptation on binocular rivalry initial dominance

    Get PDF
    Binocular rivalry (BR) is a phenomenon in which visual perception alternates between two different monocular stimuli. There has been a long debate regarding its nature, with a special emphasis on whether low- or high-level mechanisms are involved. Prior adaptation to one of the two monocular stimuli is known to affect initial dominance in the subsequent dichoptic presentation. In the present work, we have used three different types of adaptation in order to investigate how each one affects initial dominance during BR. In the first adaptation type, adapting to a stimulus identical to the one used during rivalry has led to its consequent suppression, verifying previous findings. The binocular presentation which we have used excludes the possibility of eye-adaptation, suggesting that it is the specific stimulus that the brain adapts to. In the second adaptation type, we find suppression effects following adaptation to stimuli belonging to the same category (face or house) but are different from the specific ones used in the following BR presentation. In the final adaptation type, in which the words “face” or “house” are used as adaptors, no statistically significant effect was found. These results suggest that perceptual selection can be directly influenced by the prior presentation of visual stimuli different to the ones used during BR, and thus support a higher-level, cognitive influence on the latter

    Regulation of auditory plasticity during critical periods and following hearing loss

    Get PDF
    Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway and serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss induced plasticity with brain changes observed as part of tinnitus should advance strategies to treat tinnitus by molecularly modulating plasticity

    Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations

    No full text
    Abstract The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit—the central automatic network—responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion

    Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys.

    Get PDF
    The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury

    Rapid event-related, BOLD fMRI, non-human primates (NHP): choose two out of three.

    Get PDF
    Human functional magnetic resonance imaging (fMRI) typically employs the blood-oxygen-level-dependent (BOLD) contrast mechanism. In non-human primates (NHP), contrast enhancement is possible using monocrystalline iron-oxide nanoparticles (MION) contrast agent, which has a more temporally extended response function. However, using BOLD fMRI in NHP is desirable for interspecies comparison, and the BOLD signal's faster response function promises to be beneficial for rapid event-related (rER) designs. Here, we used rER BOLD fMRI in macaque monkeys while viewing real-world images, and found visual responses and category selectivity consistent with previous studies. However, activity estimates were very noisy, suggesting that the lower contrast-to-noise ratio of BOLD, suboptimal behavioural performance, and motion artefacts, in combination, render rER BOLD fMRI challenging in NHP. Previous studies have shown that rER fMRI is possible in macaques with MION, despite MION's prolonged response function. To understand this, we conducted simulations of the BOLD and MION response during rER, and found that no matter how fast the design, the greater amplitude of the MION response outweighs the contrast loss caused by greater temporal smoothing. We conclude that although any two of the three elements (rER, BOLD, NHP) have been shown to work well, the combination of all three is particularly challenging
    corecore