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Highlights 
 

• During CPs, brain plasticity is enhanced and sensitive to acoustic experience 
 

• Enhanced plasticity can be reinstated in the adult brain following hearing loss 
 

• Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity 
 

• Plasticity resulting from hearing loss may contribute to the emergence of tinnitus 
 

• Modifying plasticity in the adult brain may offer new treatments for tinnitus 
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Abstract 
 
Sensory input has profound effects on neuronal organization and sensory maps in the brain. 
The mechanisms regulating plasticity of the auditory pathway have been revealed by examining 
the consequences of altered auditory input during both developmental critical periods—when 
plasticity facilitates the optimization of neural circuits in concert with the external environment—
and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we 
summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating 
neuronal organization and tonotopic map plasticity during developmental critical periods and in 
adulthood. These mechanisms are shared in both the juvenile and adult brain and along the 
length of the auditory pathway and serve to regulate disinhibitory networks, synaptic structure 
and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both 
neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending 
and descending auditory circuits, which link the auditory cortex and lower structures. Further 
work identifying the interplay of molecular and cellular mechanisms associating hearing loss 
induced plasticity with brain changes observed as part of tinnitus should advance strategies to 
treat tinnitus by molecularly modulating plasticity. 
 
1. Overview 
 
A remarkable feature of sensory pathways in the brain is their organization of sensory 
representations in the form of topographic maps. In the auditory domain, frequency receptive 
fields of neurons form an orderly tonotopic map. Tonotopy is preserved along the auditory 
neuraxis and reflects the topographically organized projections from the cochlea. Organization 
of the tonotopic map is genetically predetermined and laid out coarsely during prenatal 
development. It is subsequently refined in an activity-dependent manner, first by spontaneous 
activity and, following hearing onset, by evoked activity (Clause et al., 2014; Kandler et al., 
2009; Tritsch et al., 2010; Wang et al., 2015). The crucial role of auditory experience for the 
proper development of the tonotopic map is evident during critical periods, when the quality of 
the acoustic environment leaves a robust imprint on the receptive fields of cortical neurons 
(Zhang et al., 2001). Although organization of the tonotopic map was traditionally considered 
resistant to alterations following the closure of the critical period, converging evidence indicates 
retained (albeit reduced) plasticity in the adult brain. This plasticity can be observed at different 
levels of neuronal organization, ranging from molecular, cellular and synaptic changes in 
excitability, to shifts in tuning of single neurons, to large-scale, stable reorganization of the 
tonotopic map.  Many aspects of auditory plasticity and their perceptual consequences have 
been reviewed elsewhere (Irvine, 2018; Keuroghlian et al., 2007; Pienkowski et al., 2011a; 
Schreiner et al., 2014; Syka, 2002; Weinberger, 2007). Here, we focus on the molecular and 
cellular mechanisms regulating neuronal organization and map plasticity during developmental 
critical periods and in the adult brain, with an emphasis on changes in regulation driven by 
peripheral auditory deprivation, for instance, through hearing loss. We conclude with a 
discussion of how neuronal reorganization and plasticity—triggered by overt and also hidden 
hearing loss—may contribute to tinnitus. 
 
2. Developmental critical periods in the auditory cortex 
 
CPs are defined epochs of early postnatal development when structural and functional neural 
circuits are shaped by passive experience with the external environment (Hensch, 2004; Kuhl, 
2010). These windows of plasticity drive the maturation of subcortical and cortical sensory 
representations, with consequence for emerging behavior and cognition (Hess, 1958; 
Lenneberg, 1967; Lorenz, 1935; Scovel, 1969). In the auditory system, this rapid optimization 
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facilitates feature-specific expertise such as phoneme identification, language acquisition, 
absolute pitch, and musical aptitude (Penhune, 2011; Werker et al., 2015; Zhao et al., 2016a), 
yet also represents a period of susceptibility to impoverished environments (Bures et al., 2017; 
Knudsen, 2004; Sanes et al., 2011; Uylings, 2006). For example, prelingual deafness has 
permanent impact on the development of auditory circuits. Children born deaf may regain 
hearing with cochlear implants but demonstrate sustained perceptual and language deficits that 
are more pronounced with delayed implantation (Kral et al., 2012; Kral et al., 2019; Nicholas et 
al., 2006; Svirsky et al., 2004). 
 
Developmental plasticity of the cortical tonotopic map is the chief model of CPs in the auditory 
system. The tonotopic map is established during a CP for frequency tuning, when passive 
acoustic experiences influence map organization across species (Keuroghlian et al., 2007; Kral, 
2013; Sanes et al., 2011; Werker et al., 2015). In rodents, exposure to pure tones results in the 
expanded representation of the tone frequency within the tonotopic map (Han et al., 2007; Kim 
et al., 2009; Zhang et al., 2001). This robust plasticity is restricted to a short three-day CP, 
usually reported as postnatal days 11 to 14, following the maturation of peripheral auditory 
structures (Geal-Dor et al., 1993), (Barkat et al., 2011; de Villers-Sidani et al., 2007). This 
plasticity occurs in primary auditory cortex but not auditory thalamus, implicating plasticity at 
thalamocortical or intracortical synapses (Barkat et al., 2011). CPs have also been described for 
other sound features including binaural hearing, tuning bandwidth, temporal sequences, 
frequency modulation, and amplitude modulation (Caras et al., 2015; Insanally et al., 2009; 
Nakahara et al., 2004; Polley et al., 2013). In general, CPs are thought to occur in a hierarchical 
sequence, with representations for basic features consolidating before more complex ones (de 
Villers-Sidani et al., 2011; Insanally et al., 2009; Sanes et al., 2011). Figure 1A and 1B depict 
this developmental trajectory in the rodent primary auditory cortex. 
 
Interestingly, the timing of CP windows is itself plastic and can be influenced by the sensory 
environment (Takesian et al., 2013; Voss et al., 2017). Unstructured, noisy environments 
postpone CP closure (Chang et al., 2003), whereas exposure to highly structured pulsed tones 
or pulsed white noise hastens CP closure (Zhang et al., 2002; Zhou et al., 2012). Enriched 
sensory environments also keep the CP open longer, and have opposite effects to deprivation, 
stimulating dendritic growth and improving auditory response properties (Bose et al., 2010; 
Bures et al., 2018; Cai et al., 2010). Effects of sound exposure on CP timing can be further 
restricted to specific functional regions within the auditory cortex. For example, band-limited 
noise delays tonotopic refinement only for portions of the tonotopic map within the noise band 
(de Villers-Sidani et al., 2008). The presence of high-fidelity sensory inputs is therefore 
necessary for the normal progression of critical periods and the functional and structural 
maturation of the primary auditory cortex, as has been analogously demonstrated in primary 
visual cortex (Crair et al., 1998; de Villers-Sidani et al., 2011).  
 
The absence of early sensory experience is expected to have the most profound effects on 
auditory cortical representations. Rodent studies indicate that complete sensorineural hearing 
loss during development disrupts synaptic inhibition and increases excitability throughout the 
central auditory pathway, resulting in broadened frequency tuning (reviewed in Sanes et al., 
2009; Takesian et al., 2009). Neonatal high frequency hearing loss induced through cochlear 
lesions or traumatic noise exposure alters cortical tonotopy, shifting the tuning preference of 
neurons in high frequency regions to lower frequencies (Eggermont et al., 2000; Harrison et al., 
1991). Even transient hearing loss during development, such as that experienced by children 
with chronic otitis media, can result in persistent changes in inhibitory synapses (Mowery et al., 
2015; Mowery et al., 2019; Takesian et al., 2012) that could contribute to sustained perceptual 
deficits later in life (Caras et al., 2015; Takesian et al., 2012; Whitton et al., 2011). However, 
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heightened plasticity during early life also serves to functionally enhance inputs from spared 
sensory structures (Bavelier et al., 2002; Kral, 2007; Sharma et al., 2015), consistent with 
improved perceptual abilities in the intact modalities (Lomber et al., 2010; Meredith et al., 2011). 
This cross-modal plasticity occurs more prominently in higher-order auditory areas as opposed 
to primary auditory cortex (Kral, 2007), and has been found to preserve the functional role of 
cortical regions, such as stimulus localization, despite enhancing responses to a novel modality 
(Meredith et al., 2011). 
 
3. Evidence of cortical plasticity in the adult auditory cortex following hearing loss 
 
Just as early sensory experience is necessary for the normal development of sensory brain 
regions, the continued presence of patterned sensory inputs is also critical for adult brain 
function. Decades of research have shown that both loss of sensory input from the periphery 
(e.g., Chino et al., 1992; Diamond et al., 1993; Maier et al., 2003; Robertson et al., 1989) and 
significant changes in the sensory environment (e.g., Pienkowski et al., 2009; Zhou et al., 2011) 
can result in the reorganization of adult sensory cortices across species. For example, seminal 
studies examining plasticity of the somatosensory cortex in adult nonhuman primates reported 
that, after finger deafferentation, the deprived cortical territory was invaded by an expansion of 
the neighboring finger representations (Merzenich et al., 1983a; Merzenich et al., 1983b; Pons 
et al., 1991). These findings indicate that the mechanisms that constrain plasticity after the CP 
can be at least partially released to permit reorganization of sensory representations in the 
mature cortex. In this section, we highlight evidence that shows the potential for CP-like 
plasticity in the mature auditory cortex following alteration of acoustic inputs.  
 
Large scale topographic map changes in auditory cortex have similarly been demonstrated 
following peripheral deafferentation. Restricted damage to the auditory periphery induces robust 
plasticity in the auditory cortex of both juvenile and adult animals (Pienkowski and Eggermont, 
2011), mirroring earlier findings in somatosensory cortex. For example, spatially-restricted 
lesions of the adult cochlea cause an over-representation in primary auditory cortex of the 
frequencies that stimulate cochlear regions flanking the damage, distorting the cortical tonotopic 
map (Eggermont et al., 2000; Robertson et al., 1989) (Rajan et al., 1993; Robertson et al., 
1989). Acute exposure to intense pure tones also causes a profound reorganization of tonotopic 
maps in the adult primary auditory cortex, accompanied by the broadening of tuning curves and 
increases in both spontaneous and sound-evoked activity (Calford et al., 1993; Kimura et al., 
1999; Norena et al., 2003b; Norena et al., 2008). 
 
Mounting evidence has shown that even non-traumatic sound experience may result in central 
auditory plasticity. Extended (week-long) exposure to moderate intensity tones is associated 
with reduced neural excitability in the cat auditory cortex (Pienkowski et al., 2012). This 
reduction in activity is restricted to the portion of the auditory cortex corresponding to the 
exposure frequency range and likely reflects homeostatic plasticity in response to chronic 
stimulation. Prolonged exposure to around-the-clock broadband white noise at non-traumatic 
intensities has also been found to result in disorganization of tonotopic gradients and disruption 
of frequency processing in the adult rat primary auditory cortex (Thomas et al., 2019; Zheng, 
2012; Zhou et al., 2012). This phenomenon has been proposed to occur through a reopening of 
CP plasticity, as exposure to pure tones following noise exposure results in their exaggerated 
representation within the tonotopic map (Thomas et al., 2019; Zhou et al., 2012). Unlike CP 
plasticity, however, sound exposure here had to be persistent and long-lasting to induce map 
plasticity.  
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Later in life may also be a period during which sensory representations are unusually plastic. 
Noisy or absent sensory inputs caused by natural age-related degeneration of the auditory 
periphery may contribute to findings of dysregulated plasticity in the aged auditory cortex 
(Kamal et al., 2013). Aging is accompanied by reduced representational stability, poorer 
temporal processing, and disrupted tonotopy in the auditory cortex (Kamal et al., 2013; 
Mendelson et al., 2001; Turner et al., 2005). A recent report found that the tonotopic map of 
aged rats exhibits plastic reorganization in response to passive tone exposure, similar to CP 
plasticity (Cisneros-Franco et al., 2018). However, unlike the CP, this plasticity does not result in 
the formation of stable representations, as map reorganization could be easily ‘overwritten’ by a 
second pure tone exposure. While aging has long been associated with a loss of neural 
plasticity, this study instead suggests enhanced, but dysregulated, plasticity in the aged brain, 
which may have deleterious effects on auditory processing and learning by allowing nonspecific 
sensory experiences to distort existing cortical representations. 
 
4. Mechanisms of juvenile and adult plasticity 
 
The findings above (Section 3) demonstrate the ability for altered sensory inputs to drive cortical 
reorganization in the adult auditory cortex. Understanding the molecular, cellular and circuit 
mechanisms for this heightened plasticity may provide insight into therapeutic strategies to 
either prevent or induce the re-wiring of aberrant cortical circuits beyond early life.  Among these 
mechanisms, the maturation of several molecular and structural brakes serves to close CPs, 
notably through the developmental increase of inhibitory transmission and structural barriers to 
plasticity. In this section, we focus on the mechanisms that underlie experience-dependent and 
deprivation-induced plasticity in the developing and mature auditory cortex. We draw on parallel 
findings from the visual and somatosensory domains, which have also demonstrated the brain’s 
capacity to reopen a state of heightened plasticity following alteration of sensory inputs.  
Importantly, similar molecular mechanisms appear to be shared during CP and adult plasticity 
and are illustrated in Figure 2. 
 
4.1. Disinhibition 
 
The onset of sensory experience triggers the maturation of inhibition (Kandler, 2004), which 
may act to suppress spontaneous activity generated by the cochlea prior to hearing in favor of 
sensory evoked activity (Toyoizumi et al., 2013). A concurrent increase in brain derived 
neurotrophic factor (BDNF) contributes to the development of adult-like auditory cortical 
representations (Anomal et al., 2013). BDNF may promote the maturation of GABAergic 
interneuron populations, including parvalbumin (PV) expressing interneurons, heavily implicated 
in visual CP plasticity (Hensch, 2005; Huang et al., 1999; Itami et al., 2007). Indeed, boosting 
inhibition using benzodiazepines (Hensch et al., 1998; Fagiolini and Hensch, 2000; Fagiolini et 
al., 2004), stimulating the maturation of inhibitory circuits with BDNF (Hanover et al., 1999), or 
activating interneuron enriched transcription factors (Beurdeley et al., 2012; Durand et al., 2012; 
Krishnan et al., 2015; Spatazza et al., 2013) can accelerate CP onset in the visual cortex.  
 
Reducing inhibitory transmission appears sufficient to revert the mature cortex to a state of 
juvenile plasticity permissive of (re-)wiring cortical connections (Morishita et al., 2008). In the 
auditory cortex, inactivating PV cells using a chemogenetic approach permits CP-like tonotopic 
reorganization (Cisneros-Franco et al., 2019). Likewise, ocular dominance plasticity can be 
reactivated by decreasing GABA-mediated inhibition through fluoxetine treatment (Maya 
Vetencourt et al., 2008), and pharmacological inhibition of the GABA synthesizing enzyme GAD 
or GABAA receptors (Harauzov et al., 2010; Kuhlman et al., 2013). Enriched environments may 
also restore plasticity through reduced GABAergic inhibition (Sale et al., 2007).  
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Both juvenile and adult hearing loss are associated with acute and long-term decreases in 
cortical inhibition. A loss of acoustic input during development (Kotak et al., 2005; Mowery et al., 
2015; Sarro et al., 2008; Takesian et al., 2010; Takesian et al., 2012) or adulthood (Balaram et 
al., 2019; Browne et al., 2012; Llano et al., 2012) leads to decreased inhibition in primary 
auditory cortex, indicated by reduced expression of GABAergic markers, such as GAD67, 
GABAα1 and GABAβ2/3 receptors, reduced synaptic inhibitory currents, and reduced sensitivity 
of cortical networks to GABAA receptor blockade. Aging has also been associated with 
downregulated inhibitory markers in the rodent primary auditory cortex including GAD 
expression, GABAA receptor subunit protein levels and binding, and PV-positive and SST-
positive cell densities (Burianova et al., 2009; Caspary et al., 2013; Kamal et al., 2013; Ouda et 
al., 2008; Ouellet et al., 2014). Given the profound effects of both transient and permanent 
sensory deprivation, this age-related decrease in inhibition could potentially be accelerated by 
presbycusis or accumulated traumatic noise exposure. 
 
Reductions in PV and somatostatin (SST) interneuron-mediated inhibition have been implicated 
in cortical disinhibition following adult acoustic deprivation. Within hours after mild or severe loss 
of auditory nerve fibers, a drop in PV interneuron-mediated inhibition is observed in the adult 
mouse primary auditory cortex (Resnik et al., 2017). This reduced inhibition is sustained for 
weeks, even as hearing thresholds and cortical receptive field tuning returns to pre-exposure 
levels. Moreover, this early dip in PV interneuron-mediated inhibition predicts the eventual 
recovery of sound-evoked cortical responses weeks later. A similar rapid decrease in PV 
interneuron activity has been reported in the primary visual (Kuhlman et al., 2013) and 
somatosensory (Gainey et al., 2018) cortices following sensory deprivation. Interestingly, SST 
interneurons in primary auditory cortex show increased spontaneous and tone-evoked firing 
rates after acoustic trauma and may therefore serve to counteract cortical hyperexcitability 
(Novak et al., 2016). An understanding of how the distinct populations of cortical inhibitory 
interneurons dynamically respond in the days and weeks following hearing loss will provide 
important insight into the mechanisms underlying cortical hyperexcitability and its behavioral 
consequences.  
 
Recent work has begun to uncover the role of specific disinhibitory microcircuits gated by 
neuromodulatory mechanisms for cortical plasticity (Froemke et al., 2007). The most superficial 
cortical layer (layer 1) is sparsely populated by a diverse group of GABAergic interneurons that 
express the serotonin 5HT3A receptor and are distinct from the two other commonly studied 
interneuron classes expressing PV or SST (Lee et al., 2010). This interneuron group is uniquely 
positioned to influence cortical plasticity as layer 1 receives both sound driven inputs from the 
auditory thalamus and signals from several neuromodulatory systems, including the 
serotonergic and cholinergic systems (Lee et al., 2010; Letzkus et al., 2011; Takesian et al., 
2018). Although they produce the inhibitory neurotransmitter GABA, subsets of these 
interneurons have a ‘disinhibitory’ function; because they target other inhibitory interneurons, 
their activity leads to a net withdrawal of inhibition from glutamatergic neurons (Fu et al., 2014; 
Letzkus et al., 2011; Pfeffer et al., 2013; Takesian et al., 2018). This disinhibitory circuit 
mediates tonotopic map reorganization during the CP, likely by inhibiting PV neurons (Takesian 
et al., 2018). A subtype of layer 1 neurons expressing neuron derived neurotrophic factor 
(NDNF) also plays a role in plasticity that underlies adult associative learning (Abs et al., 2018). 
Furthermore, manipulating the activity of another group of superficial interneurons expressing 
vasoactive intestinal peptide (VIP) modulates plasticity in adult primary visual cortex by 
inhibiting SST interneurons (Fu et al., 2014). Together, these studies highlight a diverse group 
of disinhibitory neurons in superficial cortex as a promising target to regulate adult plasticity 
across sensory cortices. 
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Significant changes in the acoustic environment or peripheral activity levels produce 
excitatory/inhibitory imbalances in auditory central activity. Prolonged perturbations of neuronal 
activity may eventually result in sensory map reorganization through homeostatic plasticity 
mechanisms (reviewed in Eggermont, 2017b; Gourevitch et al., 2014; Zhao et al., 2016b). In 
cases of sensory deprivation, homeostatic plasticity serves to maintain central activity in 
response to decreased activity from the periphery. Disinhibition is one form of homeostatic 
plasticity, but homeostatic mechanisms upregulating excitatory activity also contribute to 
restoration of central activity. First described in neocortical cell cultures (Turrigiano et al., 1998), 
homeostatic synaptic scaling counteracts an initial loss of activity following visual deprivation in 
rodent (Keck et al., 2013) and human visual cortex (Castaldi et al., 2020). The same has been 
demonstrated in auditory cortex following conductive hearing loss (Teichert et al., 2017) and 
traumatic noise exposure (Asokan et al., 2018). This compensatory plasticity may result from 
elevated gene expression of excitatory AMPA receptor and reduced expression of inhibitory 
GABAA receptors (Balaram et al., 2019). During chronic, non-traumatic sound exposure, 
homeostatic plasticity acts in the opposite manner, serving to reduce cortical activity in a 
frequency-specific manner in order to compensate for a persistent increase in neural activity 
due to narrow-band or broadband stimulation (Lau et al., 2015; Pienkowski et al., 2011b). 
 
4.2. Lifting the brakes on structural plasticity: perineuronal nets (PNNs) and myelin 
 
Additional brakes on CP plasticity are applied by perineuronal nets (PNNs) and myelin, each of 
which act as structural barriers to plasticity by prohibiting the formation of new synapses 
(Bavelier et al., 2010; McGee et al., 2005; Sorg et al., 2016). PNNs are extracellular matrix 
structures that form selectively around PV cells, coinciding with the maturation of auditory 
response properties (Friauf, 2000) and potentially limiting future PV cell plasticity (Takesian et 
al., 2013). In vitro degradation of PNNs reduces excitability and gain in cortex (Balmer, 2016).In 
vivo degradation of PNNs in the mature brain results in decreased inhibition (Lensjo et al., 2017) 
and a reopening of ocular dominance plasticity in the adult visual cortex (Lensjo et al., 2017; 
Pizzorusso et al., 2002). PV interneurons and PNNs may also regulate each other as part of a 
dynamic feedback loop; work in the adult mouse visual cortex shows that silencing the activity of 
PV interneurons induces the selective regression of their own PNNs (Devienne et al., 2019).  
 
Less clear is the role of sensory deprivation in adulthood on the dynamic regulation of PNNs. In 
the adult auditory cortex, a marked cell type- and layer-dependent decrease in PNNs in the 
mouse primary auditory cortex occurs following noise-induced hearing loss (Nguyen et al., 
2017). However, similar findings have not been observed in other sensory cortices. Notably, 
whisker trimming during the CP disrupts formation of PNNs in the somatosensory (barrel) 
cortex. In contrast, whisker trimming in adulthood does not cause a loss of PNNs, suggesting 
that the maintenance of established PNNs does not require normal sensory input (McRae et al., 
2007). Similar observations have been reported in the lateral geniculate nucleus, the thalamic 
relay in the visual pathway (Sur et al., 1988).  
 
The maturation of myelin is one of the last steps of development, with central auditory 
myelination in both humans and rodents beginning with the onset of hearing and continuing until 
the age of sexual maturity (Long et al., 2018). Myelin and myelin associated proteins, such as 
neurite growth inhibitors, are known to slow axon growth and limit experience-dependent 
plasticity in adult sensorimotor and visual cortices (Kartje et al., 1999; McGee et al., 2005; 
Z'Graggen et al., 1998). A burgeoning area of research is beginning to demonstrate the role of 
early sensory experience and neural activity in the developmental time course of myelination 
(Chorghay et al., 2018). For example, early musical training has been found to increase white 
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matter connectivity in musicians who receive training before the age of 7 (Steele et al., 2013). 
Decreased density of myelin basic protein has been observed in young adult rats chronically 
exposed to white noise (Kamal et al., 2013), aged rats (de Villers-Sidani et al., 2010; Kamal et 
al., 2013), and aging humans (Itoyama et al., 1980). Visual and acoustic sensory deprivation 
have therefore been proposed to exacerbate age-related alterations in myelin expression 
(Tremblay et al., 2011). 
 
4.3. Synaptic remodeling: synaptogenesis, synapse unsilencing, and short and long-term 
synaptic plasticity 
 
In the adult brain, analysis of the visual cortex points to de novo formation of synapses as a 
mechanism underlying restoration of activity in areas of deprived peripheral input. In seminal 
studies, focal binocular retinal lesions resulted in the sensory deprived area of the primary visual 
cortex, termed the lesion projection zone, to initially become quiescent. Subsequently, however, 
the area regained activity and responded to loci neighboring the lesion (Gilbert et al., 1990; 
Kaas et al., 1990). The recovery of functional processing has been attributed to an increase in 
axonal boutons and axonal processes with subsequent synaptogenesis (Darian-Smith et al., 
1994; Keck et al., 2008; Yamahachi et al., 2009). However, the extent of axonal sprouting 
appears spatially limited, such that the center of the lesion projection zone remains silent even 
after peripheral parts regained visually driven activity (Hubener et al., 2014).  
 
In the primary auditory cortex, the contribution of axonal rearrangement to the restoration of 
sound-evoked activity has not been resolved and, in fact, is contradicted by a study examining 
expression of various proteins in the primary auditory cortex of rats following unilateral noise 
exposure (Browne et al., 2012). Although various markers of inhibitory transmission were 
reduced in expression, a marker of axonal sprouting, GAP43, showed reduced expression in the 
ipsilateral auditory cortex and no change in expression in the contralateral auditory cortex, 
suggesting that reorganization of the frequency map may not rely on axonal rearrangement. 
Alternative mechanisms, such as the unmasking of silent synapses and Hebbian strengthening 
of weak synapses (Syka, 2002) as well as neuronal adaptation and both short and long term 
potentiation (Froemke et al., 2015) may be involved in reorganization of cortical frequency maps 
following auditory deprivation. The rapid onset of reorganization suggests that unmasking is 
facilitated by disinhibition in the short-term (Eggermont, 2017b; Scholl et al., 2008), whereas 
Hebbian plasticity could serve to consolidate representations. 
 
The unsilencing of NMDA-receptor-only synapses is also a critical mechanism for CP plasticity 
in sensory cortices (Huang, 2019). The CP for tonotopic plasticity is associated with the 
unsilencing of these synapses in mouse auditory cortex. This unsilencing can occur prematurely 
in response to early seizures, which subsequently prevent CP reorganization (Sun et al., 2018). 
Severe hearing loss during early development is also associated with the elimination of AMPA-
mediated long-term potentiation (LTP) (Kotak et al., 2007). LTP at auditory thalamocortical 
synapses can be unmasked in adulthood through attentional mechanisms or stimulation of 
cholinergic inputs to the cortex (Chun et al., 2013; Froemke et al., 2013), as described in more 
detail in the following section (section 4.4).  
 
Microglia also contribute to synaptic remodeling during juvenile and adult cortical plasticity, 
especially following peripheral injury or acoustic trauma. These immune cells of the central 
nervous system can change from a ‘resting’ to ‘activated’ phenotype during periods of 
neuroinflammation (Soulet et al., 2008). In both developmental and adult plasticity, microglia 
contribute to circuit refinement by engulfing synaptic elements such as axonal terminals and 
dendritic spines (Paolicelli et al., 2011; Schafer et al., 2012; Tremblay et al., 2011). Increased 
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neural activity can trigger greater microglial surveillance and modification of surrounding 
environments under inflammatory conditions (Wu et al., 2015), such as peripheral denervation 
(Ladeby et al., 2005) or traumatic noise exposure (Saljo et al., 2001). A recent study reported an 
increase in activated microglia in the adult auditory cortex of mice following noise- induced 
hearing loss (Wang et al., 2019). 
 
4.4. Neuromodulatory mechanisms: linking learning and attention to map plasticity 
 
Learning-induced changes in adult tonotopic maps are traditionally thought to require the 
precisely-timed involvement of neuromodulators recruited by arousal or attention (For reviews 
see: Pienkowski et al., 2011a; Schreiner et al., 2014). For example, pairing tones with mild 
aversive shocks causes rapid shifts in the tuning of neurons within auditory cortex toward the 
paired tone frequency (Abs et al., 2018; Bakin et al., 1990; Edeline et al., 1993). Intensive 
training on a sensory task can also induce dramatic changes in cortical tuning and 
reorganization of tonotopic maps (Bieszczad et al., 2010; David et al., 2012; Polley et al., 2006; 
Recanzone et al., 1993; Reed et al., 2011). 
 
Neuromodulatory contributions to auditory cortex may also underlie the reopening of CPs in 
adulthood. Cholinergic modulation of plasticity has been documented in experiments pairing 
stimulation of the nucleus basalis, the largest source of cholinergic projections to the auditory 
cortex, with passive tone exposure, resulting in over-representation of the exposure frequency 
(Froemke et al., 2007; Froemke et al., 2013; Kilgard et al., 1998; Weinberger, 2003). Cholinergic 
inputs to cortical layer 1 interneurons may promote cortical plasticity by disinhibition of PV 
interneurons during developmental CPs (Takesian et al., 2018) and adulthood (Letzkus et al., 
2011). Acetylcholine may also gate cortical plasticity by acting directly on thalamocortical 
synapses. Bidirectional long-term synaptic plasticity at thalamocortical synapses is gated in the 
mature brain by adenosine, which blocks glutamate release (Blundon et al., 2013; Blundon et 
al., 2011; Chun et al., 2013). Releasing this molecular brake by deleting adenosine receptors or 
the adenosine synthesizing-enzyme enables map plasticity (Blundon et al., 2017). Nucleus 
basalis stimulation releases acetylcholine at these synapses, which, through binding to 
muscarinic (metabotropic) acetylcholine receptors, blocks adenosine signaling and restores CP-
like plasticity (Blundon et al., 2011; Chun et al., 2013). 
 
The noradrenergic system has also been shown to be critical for CP plasticity in the auditory 
cortex, as pure tone exposure does not lead to tonotopic reorganization in mice that lack 
norepinephrine from birth (Shepard et al., 2015), similar to seminal findings in visual cortex 
(Bear et al., 1986; Kasamatsu et al., 1976). Indeed, pairing tones with electrical stimulation of 
the locus coeruleus, a brain region that releases noradrenaline, leads to shifts in frequency 
tuning in A1 towards the paired tone (Martins and Froemke, 2015). These findings indicate that 
neuromodulatory systems generally play a permissive role in CP plasticity and that the tightened 
control of neuromodulatory drive with maturation is a main factor in gating further experience-
dependent plasticity (Morishita et al., 2010; Takesian et al., 2018). Interestingly, basal 
cholinergic cell numbers and cholinergic neurotransmission have long been known to decline in 
the aged brain (McGeer et al., 1984; Perry, 1980) and likely contribute to dysregulated auditory 
plasticity in later life (Caspary et al., 2008). 
 
Together, these studies suggest that numerous interlinked mechanisms for plasticity exist at 
various synaptic and cellular sites within auditory cortex. Both in the developing and mature 
cortex, many of these mechanisms converge to influence the function of specific inhibitory 
circuits. Identifying circuit-level approaches to modulate plasticity will be important to prevent or 
reverse the maladaptive plasticity associated with aging and/or adult hearing loss.  
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5. Plasticity in subcortical auditory structures 
 
The auditory cortex receives input from the cochlea via a series of relays in the auditory 
brainstem. The first is the cochlear nucleus (CN), which has two main structural and functional 
divisions: the ventral and the dorsal CN. The dorsal CN relays directly to the inferior colliculus 
(IC), whereas the ventral CN first relays to the superior olivary complex (SOC), thought to be 
specifically involved in the binaural integration of acoustic input and sound localization. 
Projections from the SOC again lead primarily to the IC. From the IC, auditory signals are then 
relayed to the medial geniculate body (MGB) in the thalamus, and, from there, to the primary 
auditory cortex. Subcortical auditory relays are thought to play an important role in the binaural 
processing of sound, as well as the integration with non-auditory information (for a more 
complete overview, see, for example, Malmierca et al., 2010b). 
 
During auditory CPs, neurons in these relays undergo important morphological and 
physiological changes that are dependent on auditory input and enable fast, reliable 
neurotransmission. Complete and moderate hearing loss causes changes along the length of 
the auditory pathway (reviewed in Butler et al., 2013) that can even result in reorganization of 
tonotopic maps also present in the auditory brainstem (reviewed in Kandler et al., 2009). 
Perhaps because of their crucial role in the binaural integration of auditory input, unilateral 
compared to bilateral hearing loss can exert more profound effects on organization of the 
auditory brainstem (for example Popescu et al., 2010). Although the auditory brainstem was 
originally believed to be resistant to plasticity in adulthood to enable the stable conveyance of 
information to the auditory cortex, a variety of recent work in both animals and humans shows 
that altered acoustic input can trigger behaviorally meaningful plasticity in the adult auditory 
brainstem. Recent reviews have outlined various aspects of auditory brainstem plasticity 
(including Friauf et al., 2015; Oertel et al., 2019; Skoe et al., 2014; Tzounopoulos et al., 2009). 
Here, we highlight molecular and cellular mechanisms of plasticity that are shared between the 
auditory cortex and auditory brainstem. 
 
5.1. Inhibitory circuits 
 
Subcortical inhibitory circuits serve to sharpen auditory responses to rapidly varying signals 
(reviewed in Bender et al., 2011; Pollak et al., 2002). Profound changes in the balance of 
excitation and inhibition occur during the development (reviewed in Sanes et al., 2010), and 
auditory deprivation during CPs disrupts maturation of inhibition along the length of the auditory 
pathway (reviewed in Takesian et al., 2009). These changes may reflect homeostatic 
mechanisms to compensate for the loss of peripheral input. A variety of likely co-occurring 
molecular mechanisms give rise to increased excitatory gain and decreased inhibitory gain. For 
example, congenitally deaf mice show enhanced intrinsic neuronal excitability in principle 
neurons of the medial nucleus of the trapezoid body due to alterations in ion channel expression 
(Leao et al., 2004a; Leao et al., 2006); enhanced excitatory (glutamatergic) synaptic 
transmission at endbulbs of Held, the specialized synapses between auditory neurons and 
bushy cells in the CN (Oleskevich et al., 2004); and diminished inhibitory (glycinergic) synaptic 
transmission at calyx of Held synapses between bushy cells and principle cells of the medial 
nucleus of the trapezoid body (Leao et al., 2005; Leao et al., 2004b). A similar loss of inhibitory 
gain following deafness in adulthood is indicated by increased expression of excitatory 
glutamate receptors and reduced expression of inhibitory GABA and glycine receptors in 
various auditory brainstem structures, including the CN (Asako et al., 2005; Dong et al., 2010a; 
Suneja et al., 1998; Suneja et al., 2000), the SOC (Buras et al., 2006; Suneja et al., 1998; 
Suneja et al., 2000), and the IC (Balaram et al., 2019; Dong et al., 2010a; Dong et al., 2010b; 
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Holt et al., 2005). Age-related hearing loss is also associated with reduced inhibition in various 
structures of the auditory brainstem (reviewed in Caspary et al., 2008). These findings suggest 
that preventing the loss of inhibition or enhancing inhibitory circuits in the auditory pathway may 
mitigate auditory deficits associated with hearing loss. Indeed, recent work has shown that 
augmenting inhibitory neurotransmission in the thalamocortical pathway prevented perceptual 
defects induced by transient hearing loss during the auditory CP in gerbils (Mowery et al., 
2019). 
 
5.2. PNNs and myelin 
 
PNNs and myelin have been studied in the auditory brainstem, with both appearing at the onset 
of hearing and progressively maturing up the neuraxis to cortex (reviewed in Long et al., 2018; 
Sonntag et al., 2015). PNNs, in general, surround fast and precisely spiking neurons and thus 
are not surprisingly found in subsets of neurons in almost all brainstem auditory relays.  They 
are especially prominent around octopus cells, principal cells that fire with high temporal 
precision, in the ventral CN and around principle cells in the trapezoid body (Sonntag et al., 
2015). Genetic attenuation of PNNs in principle neurons of the medial nucleus of trapezoid body 
reduces their excitability and alters their firing properties (Balmer, 2016; Blosa et al., 2015). 
Neonatally deafened rats show reduced expression of PNN markers in neurons of the medial 
superior olive (Myers et al., 2012). These findings should motivate further work to examine the 
functional consequences of altered PNNs in response to auditory deprivation and modulation 
during developmental CPs and in adulthood. 
 
Myelination is essential for rapid conduction and precise timing of action potential conduction. A 
recent study found that, in the mouse, axonal diameter and myelin thickness of neurons in the 
trapezoid body double two weeks after the onset of hearing, with a concurrent (and expected) 
increase in transmitted firing rates and conduction speed (Sinclair et al., 2017). In the same 
study, peripheral auditory deprivation via ear plugging at hearing onset led to development of 
comparatively thinner and less myelinated fibers and ear plugging in adulthood also reduced 
myelin thickness most notably in the most myelin-rich fibers.  In rats, acoustic overexposure in 
adulthood causes, among other pathologies, disorganization of myelin sheath around axon 
fibers of auditory neurons (Coyat et al., 2019). The molecular mechanisms regulating 
myelination either normally or in response to altered acoustic input is unknown. Recent work 
examining knockout mice indicates that β-secretase 1 (BACE1), a protease shown to regulate 
myelination and myelin sheath thickness in the central and peripheral nerves, may regulate 
auditory nerve myelination, at least during development (Dierich et al., 2019). 
 
5.3. Synaptic plasticity 
 
During auditory CPs, neurons of the auditory brainstem undergo dramatic morphological 
rearrangements that are dependent on auditory input (reviewed in O'Neil et al., 2011; Yu et al., 
2014).  This structural maturation is necessary for the fast and reliable synaptic transmission 
and especially evident in the endbulbs of Held, found in the CN. Ascending processes of the 
auditory nerve form progressively more arborized synaptic endings, called endbulbs of Held, 
which eventually envelop the cell bodies of the bushy cell neurons in the anterior ventral CN 
(Ryugo et al., 1982). Auditory deprivation during development causes profound morphological 
changes in the maturation of these contacts (Baker et al., 2010), with similar albeit less dramatic 
changes also occurring with progressive, age-related hearing loss (Connelly et al., 2017) and 
hidden hearing loss caused by cochlear synaptopathy (Muniak et al., 2018). Specifically, 
endbulbs show overall reduced branching but dramatic hypertrophy of remaining postsynaptic 
densities in both cats (Baker et al., 2010) and mice (Lee et al., 2003). This hypertrophy appears 
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related to the degree of hearing loss: cats with congenital hearing loss (thresholds above 50 dB) 
exhibit synapses with sizes between those of totally deaf cats and normal hearing cats (Ryugo 
et al., 1997). In addition, in congenitally deaf cats, hypertrophy of the endbulb synapses is more 
evident in spherical compared to globular bushy cells, whereas synapses of bouton endings 
onto multipolar cells remain unaltered (Redd et al., 2002). The hypertrophy of synapses on 
spherical bushy cells, where ionotropic glutamate receptors are located, may serve to 
compensate reduced input from the auditory nerve. Consistent with this hypothesis, hypertrophy 
of the postsynaptic densities is significant in spherical bushy cells, which show high levels of 
spontaneous activity, modest in globular bushy cells, which show more medium levels of 
spontaneous activity, and absent in multipolar cells, which show medium-to-low levels of 
spontaneous activity (Redd et al., 2000; Redd et al., 2002; Ryugo et al., 1997; Ryugo et al., 
1998). Importantly, early restoration of hearing via cochlear implants in congenitally deaf cats 
rescues normal synaptic structure in both the CN (O'Neil et al., 2011; Ryugo et al., 2005) and in 
the medial SOC (Tirko et al., 2012). Thus, restoration of input early in the ascending auditory 
pathway is crucial to preventing the cascade of pathological plasticity observed along the length 
of the auditory pathway in response to both early and late deafening. 
 
The molecular factors regulating morphological changes of auditory synapses in response to 
auditory deprivation during developmental CPs and in adulthood are still unclear. In response to 
auditory deprivation, the CN shows increased expression of pro-apoptotic genes during auditory 
CPs in contrast to increased expression of pro‐survival genes following CPs (Harris et al., 
2005). Researchers examining gene expression changes in the ventral CN of adult rats shortly 
after noise exposure highlighted decreased expression of Bdnf, Homer1, and Grin1.  These 
genes encode proteins involved in neurogenesis and plasticity and may, therefore, play a role in 
synaptic remodelling (Manohar et al., 2019). Previous work has also implicated growth-
associated protein 43 (Gap43), a brain-wide regulator of synapse structural and functional 
plasticity (Holahan, 2017) and BDNF (Singer et al., 2014) in synaptic remodelling of neurons in 
the CN. Re-expression of Gap43 protein can be induced by unilateral cochlear ablation in 
neurons in the ipsilateral CN (Fredrich et al., 2010; Illing et al., 1997; Kraus et al., 2011) and 
ipsilateral lateral superior olive (Illing et al., 1997). Gap43 expression is maintained into 
adulthood in the IC and lateral and medial superior olivary nuclei (Illing et al., 1999), suggesting 
retained potential for plasticity into adulthood. Finally, increased and prolonged expression of 
activated microglia is associated with acoustic overexposure (Baizer et al., 2015), consistent 
with the role of microglia in repair after neuronal injury. 
 
5.4. Neuromodulatory mechanisms 
 
Although the role of acetylcholine as a neuromodulator regulating plasticity has been better 
studied in the auditory cortex (see Section 4.4), the cochlea and many of the intervening 
auditory relays to the cortex also receive cholinergic innervation that regulates plasticity. Both 
nicotinic and muscarinic cholinergic receptors are extensively expressed throughout the auditory 
brainstem (Morley et al., 2000), reflecting the potential for widespread influence of cholinergic 
signalling along the auditory pathway. In the auditory brainstem, cholinergic innervation arises 
from neurons in the SOC and pontomesencepahlic tegmentum, which form not only ascending 
but also collateral and descending projections within the auditory brainstem (reviewed in 
Schofield et al., 2011). These two structures also receive innervation from the auditory cortex 
(Schofield et al., 2011). Particularly well-studied are the primarily cholinergic olivocochlear 
projections from the SOC (specifically the medial and lateral superior olives) to the cochlea 
(reviewed in Fuchs et al., 2019). Medial olivocochlear neurons receive input from the CN and 
provide inhibitory output to cochlear outer hair cells, creating a feedback loop that is thought to 
be important for dynamic improvement of hearing in background noise. The 
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pontomesencepahlic tegmentum targets the MGB in the thalamus, the IC, and the CN 
(Schofield et al., 2011). Although diverse effects of acetylcholine on responses of neurons in the 
IC have been reported (Schofield et al., 2011), cholinergic modulation appears to exert more 
profound effects on sound-evoked (rather than spontaneous) activity and appears to increase 
excitability by causing a release of inhibition (Ayala et al., 2016). In the thalamus, a recent study 
showed that activation of nicotinic acetylcholine receptors on neurons of the MGB enhances 
both ascending inhibitory (tectothalamic) projections and descending excitatory (corticothalamic) 
inputs, potentially integrating bottom-up and top-down mechanisms to improve signal detection 
(Sottile et al., 2017). Finally, thalamocortical plasticity is malleable not only during auditory CPs 
(Chun et al., 2013) but can also be unmasked by activation of muscarinic cholinergic inputs to 
the thalamus (Blundon et al., 2011). In addition to acetylcholine, glutamate, GABA, glycine, and 
dopamine also regulate plasticity in the auditory brainstem as part of descending pathways 
(reviewed in Schofield et al., 2019). Improved understanding of the role of these various 
neuromodulatory mechanisms will allow manipulation of anatomically and functionally specific 
circuits to regulate plasticity in the auditory brainstem to offset auditory learning and perceptual 
defects induced by hearing loss. 
 
6. Hearing loss, (maladaptive) plasticity in the auditory pathway, and the emergence of 
tinnitus 
 
Noise- and age-related hearing loss are the biggest risk factors for tinnitus (Elgoyhen et al., 
2010; Shore et al., 2016), the perception of phantom sounds, which affects between 12-30% of 
adults (McCormack et al., 2016; Møller, 2011). In animals, hearing loss has been associated 
with changes in cortical response properties (see Section 3), suggesting that cortical plasticity 
induced by hearing loss may maladaptively trigger tinnitus. A causal relationship between 
hearing loss and tinnitus through maladaptive plasticity is supported, not only by the high 
comorbidity of hearing loss and tinnitus, but also by the observation that the  perceived 
frequency profile of the phantom percept often coincides with the frequency profile of the 
hearing loss (Norena et al., 2002; Schecklmann et al., 2012).  However, hearing loss is not 
always associated with tinnitus (Møller, 2011), and individuals with normal audiograms (but 
perhaps hidden hearing loss) can also report tinnitus (e.g., Schaette et al., 2011). Much 
research is currently focused on disentangling the neural changes associated with tinnitus from 
those associated strictly with hearing loss. Additional albeit more limited work is focused on 
disentangling the confound of aging on both tinnitus and hearing loss (reviewed in Ibrahim et al., 
2019) although that work is not discussed here. 
 
Early research implicated reorganization of the tonotopic map in the auditory cortex as a 
potential neural correlate of tinnitus in humans (e.g., Mühlnickel et al., 1998) and animals (e.g., 
Eggermont et al., 2004; Irvine, 2000; Kaltenbach, 2011). For example, pure tone exposure 
causing mild to moderate high-frequency hearing loss—often associated with tinnitus in humans 
(Tan et al., 2013)—led to profound reorganization of the cortical tonotopic map in cats 
(Eggermont et al., 2000). One study suggested a direct causal relationship between tonotopic 
map reorganization and tinnitus, showing that tone exposure paired with vagal nerve stimulation 
both reversed tonotopic map reorganization and eliminated behavioral indicators of tinnitus in 
previously noise-exposed rats (Engineer et al., 2011). However, very recent research indicates 
that cortical reorganization is not necessary for tinnitus. By examining mouse strains with 
different susceptibilities to developing tinnitus, Miyakawa and colleagues showed that cortical 
map distortions were associated with hearing loss but not tinnitus (Miyakawa et al., 2019). 
Importantly, research with animal models is complicated by the varied methods used to induce 
tinnitus and the lack of consensus on reliable measures to detect its presence (reviewed in von 
der Behrens, 2014). 
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In humans, brain imaging (functional magnetic resonance imaging, fMRI) studies have found no 
evidence of cortical tonotopic reorganization when examining subjects with tinnitus but normal 
or near-normal hearing thresholds (Berlot et al., 2020; Langers et al., 2012). A recent study that 
used subjects with or without tinnitus but otherwise carefully matched for moderate to profound 
high-frequency hearing loss found that changes in cortical responses were associated with 
hearing loss and were, in fact, more pronounced in hearing loss without than with tinnitus 
(Koops et al., 2020). The direction of the changes, however, was opposite to that predicted from 
the animal literature, with increased responses to frequencies within—rather than outside of—
the hearing loss range (i.e., increased responses at higher frequencies). In their study, stimuli 
were presented at equal loudness levels across subjects such that stimulus intensities were 
greater in individuals with greater hearing loss. Thus, it is possible that the differences observed 
by Koops et al. between hearing-impaired subjects with and without tinnitus (2020) reflect 
differences in the peripheral pattern of the hearing loss (Tan et al., 2013) rather than changes 
arising centrally as a consequence of hearing loss. Consistent with this idea, earlier studies, 
which used constant stimulus levels, found either no changes in cortical responses associated 
with hearing loss (Ghazaleh et al., 2017; Lanting et al., 2008; Wolak et al., 2017) or increased 
responses at lower frequencies (Ghazaleh et al., 2017), opposite to the findings of Koops et al. 
(2020). Importantly, research in humans is complicated by the heterogeneity of tinnitus 
presentation, and likely also of the underlying causes and mechanisms (reviewed in Cederroth 
et al., 2019). 
 
Lack of cortical reorganization in humans with tinnitus is consistent with brain imaging studies in 
the visual and somatosensory domains. In the visual domain, macular degeneration is a 
condition which, like high-frequency hearing loss, deprives a limited part of the cortical sheet of 
its input. Even after years of visual input deprivation due to macular degeneration, the relevant 
cortical regions remain non-responsive (e.g., Baseler et al., 2011; Smirnakis et al., 2005; 
Sunness et al., 2004), suggesting that cortical organization is stable despite input deprivation. 
Somatosensory studies have suggested that cortical stability is, in fact, associated with phantom 
perception. These studies exploited the fact that patients with limb amputations often 
experience vivid impressions that they can move the missing limb. They showed that such 
phantom perceptions of missing limb movements can elicit orderly activations within the 
deprived cortical regions (Kikkert et al., 2016), and that the strength of the activation is 
associated with the severity of phantom limb pain (Kikkert et al., 2018; Makin et al., 2013). Thus, 
findings across sensory domains suggest that phantom percepts may arise not from cortical 
map reorganization but, conversely, from map stability. 
 
As another strategy to disentangle the effects of hearing loss and tinnitus, new lines of research 
have begun to examine the contribution of presumably non-traumatic sound experience—
potentially causing hidden forms of hearing loss—to changes in cortical responses (reviewed in 
Eggermont, 2017a) as well as tinnitus. Cats exposed to either synthetic tone pips or white noise 
(Pienkowski et al., 2009), or to “real-world” noise (Pienkowski et al., 2013) at non-traumatic 
levels demonstrated altered neural activity in the auditory cortex, suggesting that passive sound 
exposure may lead to a tinnitus percept in the absence of overt hearing loss (reviewed in 
Pienkowski et al., 2012). Findings in animals suggest that presumably non-traumatic noise 
exposure can lead to substantial and permanent loss of synapses between the inner hair cells 
and auditory neurons—called cochlear synaptopathy—that is not detectable by audiograms 
(reviewed in Liberman et al., 2017), raising the possibility that tinnitus may be triggered by 
audiometrically hidden forms of hearing loss such as cochlear synaptopathy. Findings testing 
this prediction have so far been inconsistent, with some work suggesting that synaptopathy is 
associated with tinnitus (Forster et al., 2018; Ruttiger et al., 2013) and other work finding no link 



Page 15 of 38 

(Hickox et al., 2014; Pienkowski, 2018). Both biological and experimental differences (e.g., 
strain and species differences and methods of tinnitus detection) may account for the variability 
in findings. 
 
Research in animals has implicated a few molecular candidates and pathways that appear 
specifically involved in the generation of tinnitus following hearing loss. Downregulation of 
GAD65, an enzyme required in the synthesis of the inhibitory neurotransmitter GABA, is 
necessary for the generation of tinnitus following noise-induced hearing loss (Miyakawa et al., 
2019). Decreased mobilization of Arc/Arg3.1, an activity-dependent cytoskeletal protein required 
for homeostatic synaptic plasticity in mouse primary visual cortex (Gao et al., 2010; Sedley et 
al., 2015)in the auditory cortex is associated with the development of tinnitus but not hearing 
loss alone following noise exposure (Ruttiger et al., 2013). Genetic knockout and 
pharmacological blockade of TNFα, a proinflammatory cytokine also involved in regulating 
homeostatic plasticity (Steinmetz et al., 2010; Stellwagen et al., 2006), prevented noise-induced 
generation of tinnitus; conversely, TNFα administration caused tinnitus behavior in normal 
hearing animals (Wang et al., 2019). Together these findings indicate that there are molecular 
factors that regulate whether (or not) plasticity triggered by hearing loss results in tinnitus. 
 
Although cortical map organization may be stable despite input deprivation, there is consensus 
that tinnitus is associated with altered neural activity and cortical plasticity in some form. 
Metabolic measures, such as fMRI, may be insufficient to detect these types of plasticity, as  
they cannot distinguish between excitatory versus inhibitory activity (Heeger et al., 2002; 
Logothetis, 2008) and may, therefore, fail to detect changes in inhibition following auditory 
deprivation that have been observed in animals (e.g., Norena et al., 2003a; Rajan, 1998). 
Consistent with this idea, results from human studies using magnetic resonance spectroscopy 
(MRS) have suggested that both hearing loss (Gao et al., 2015) and tinnitus (Sedley et al., 
2015) can be associated with reductions in the concentration of the main inhibitory 
neurotransmitter, GABA, within the auditory cortex. Similar changes have also been observed in 
the visual cortex as a result of visual deprivation (Lunghi et al., 2015). 
 
In animals, the observation of altered neural activity in association with noise-induced tinnitus is 
not restricted to the auditory cortex, and, in fact, has been more extensively studied in 
subcortical structures of the auditory pathway. Here too research efforts are mainly focused on 
identifying the cellular and molecular changes that distinguish hearing loss with tinnitus from 
hearing loss alone (reviewed in Shore et al., 2019). Cortical structures also provide descending 
corticofugal input, which is thought to play a role in cortical plasticity and learning (reviewed in 
Malmierca et al., 2010a; Suga, 2008; Suga, 2012) and may, therefore, also regulate the 
generation of tinnitus. In humans, tinnitus has been found to be associated with both increased 
(Boyen et al., 2014; Lanting et al., 2008) and decreased (Hofmeier et al., 2018) activity in 
subcortical structures, as well as altered connectivity between cortical and subcortical structures 
(Hofmeier et al., 2018; Husain et al., 2014). 
 
Finally, in both animals and humans, tinnitus has been linked to hyperactivity in non-auditory 
brain areas (reviewed in Middleton et al., 2012), as well as altered connectivity between non-
auditory and auditory brain areas (reviewed in Husain et al., 2014). Therefore, the maintenance 
of the tinnitus percept may involve a distributed network of brain areas, including those involved 
in limbic, memory and attentional function, which have previously been thought to control the 
emotional/cognitive response to tinnitus (reviewed in Elgoyhen et al., 2015; Shahsavarani et al., 
2019). Additional work is necessary to clarify the contributions of these subcortical and non-
auditory structures to plasticity of the auditory cortex associated with tinnitus and to distinguish 
the structures that generate tinnitus from those that maintain it. 
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6. Conclusion 
 
In the adult brain, a complex interplay of cellular, molecular, and circuit-level mechanisms 
governs cortical plasticity in response to altered acoustic experience and hearing loss, with 
likely distinct mechanisms giving rise to hearing loss with tinnitus. Importantly, work in animals 
has shown that adult plasticity requires extrinsic alterations and possible recruitment of 
neuromodulatory circuits with constraints imposed by intrinsic (genetic) programs. In humans, 
there appear to be not only individual differences in the susceptibility to tinnitus, which may 
result from intrinsic genetic differences (Cederroth et al., 2017), but also individual differences in 
the response to tinnitus treatment (McFerran et al., 2019). These treatments, which currently 
rely on various approaches and combinations of approaches, including hearing aids, sound 
therapy, brain stimulation, cognitive and behavioral therapy, medication, and acupuncture 
(Bauer et al., 2017; Brennan-Jones et al., 2019; Lin et al., 2019), may activate pathways 
regulating plasticity. Therefore, a more precise understanding of the mechanistic interplay of 
factors regulating plasticity will enable the development of more effective, reliable, and 
personalized treatments for tinnitus. 
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Figures Legends 
 
Figure 1. Auditory critical period plasticity in development and adulthood in animal 
models. A. Development is characterized by multiple overlapping and successive critical 
periods (CPs) during which sensory representations are formed. CP timing is malleable and 
depends on the maturation of plasticity regulators. Following maturation, sensory 
representations are stable, and CPs can only be reopened if molecular brakes are lifted. A 
natural increase in dysregulated plasticity is observed with aging, which may be accelerated by 
hearing loss. B. Normal tonotopic map development vs. reorganization due to enhanced 
plasticity. Left: Passive tone pip exposure during the CP for frequency tuning results in an over-
representation of the exposed tone within the tonotopic map. Middle: Over-representation can 
be induced in the adult cortex by pairing nucleus basalis (NB) stimulation with tone presentation. 
Right: Hearing loss in a restricted frequency range can result in reorganization of the tonotopic 
map to over-represent the spared frequencies. 
 
Figure 2. Cellular and molecular mechanisms of cortical plasticity. Abbreviations: A1R: 
adenosine A1 receptor, BDNF: brain derived neurotrophic factor, CP: critical period, FM: 
frequency modulated, GABAAR: GABAA receptor, mAChR: muscarinic acetylcholine receptor, 
MGB: medial geniculate nucleus, nAChR: nicotinic acetylcholine receptor, NB: nucleus basalis, 
NDNF: neuron derived neurotrophic factor, VIP: vasoactive intestinal peptide, PNN: 
perineuronal net, PV: parvalbumin, Pyr: pyramidal, SST: somatostatin. 
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Highlights 
 

• During CPs, brain plasticity is enhanced and sensitive to acoustic experience 
 

• Enhanced plasticity can be reinstated in the adult brain following hearing loss 
 

• Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity 
 

• Plasticity resulting from hearing loss may contribute to the emergence of tinnitus 
 

• Modifying plasticity in the adult brain may offer new treatments for tinnitus 
 


