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The luminance contrast at the borders of a surface strongly influences surface’s apparent brightness, as
demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation
mechanism believed to spread contrast information from borders to the interior. This process is disrupted
by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask
(Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present
study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the
visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted
by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of
the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask
and measured the differential disruption that masking causes on brightness estimation. We found that
the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking
is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge struc-
ture has been extracted.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The perceived brightness of a surface differs substantially from
its photometric luminance. A number of classic visual illusions
demonstrate the important role that contrast edges play in the
visual appearance of an enclosed surface. For instance, when view-
ing the Craik–O’Brien–Cornsweet illusion, observers interpret iso-
luminant areas as having different brightness due to the
luminance intensity ramps at their edges. The spatial influence of
such contrast edge effects can be extensive (for example,
Adelson, 2000; Komatsu, 2008).

Such phenomena can be understood in terms of the operation of
spatial filtering processes that act at very early stages (pre-cortical)
of visual processing (Blakeslee & McCourt, 1999; McArthur &
Moulden, 1999; Otazu, Vanrell, & Parraga, 2008; Watt & Morgan,
1985). Alternatively, higher-level explanations have been offered
on the basis that the brain employs propagation mechanisms (‘‘fill-
ing-in’’), whereby attributes encoded at one portion of the scene
(e.g., contrast edges) influence the perceptual appearance of stimu-
lus attributes that the visual system appears less ready to encode
(e.g., regions of homogenous intensity) or unable to sense (e.g.,
due to the retinal blind spot) (Anstis, 2010; Komatsu, 2006;
Pessoa, Thompson, & Noe, 1998). Electrophysiological recordings
from the visual cortex provide some support for the notion that
neural activity spreads across the cortex during presentation of
displays that involve filling-in effects (De Weerd et al., 1995;
Lamme, Rodriguez-Rodriguez, & Spekreijse, 1999). This lateral
spreading of activity may provide part of explanation for the
absence of ‘missing’ information in our perceptual interpretation
of the world, and is compatible with psychophysical evidence for
the lateral spread of contrast information across the cortical sur-
face (Davey, Maddess, & Srinivasan, 1998).

One means of studying the mechanisms of brightness percep-
tion is to interfere with the putative filling-in mechanisms that
may support it. Paradiso and Nakayama (1991) developed such
an approach using metacontrast masking, reasoning that if bright-
ness estimation involves the spread of activity from the border of a
surface towards its interior, then it should be possible to interrupt
it. Specifically, they hypothesized that if contrast information is
propagated from contrast edges, the subsequent presentation of
new border signals should interfere with the filling-in process
before it was completed. They found that the brightness at the cen-
tre of a uniform target was considerably reduced when followed
(50–100 ms) by a briefly presented circular mask (concentric with
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the target). Moreover, they observed a trade-off between the dis-
tance between the edges of the target and mask and the time at
which the mask had a suppressive effect on brightness, which they
suggested was compatible with a filling-in process where spread-
ing of activity occurred at around 130 deg/s. They further observed
that masking was greater under dichoptic presentation (target and
mask presented to different eyes) than under monoptic pre-
sentation: in the former case, dramatic brightness suppression
occurred even with simultaneous presentation of target and mask.
This indicates that binocular processes are involved in the estima-
tion of brightness, indicating contributions at the cortical level,
although effects of rivalry or binocular summation could not be
separated.

Information about three-dimensional scene structure has pre-
viously been suggested to be important for brightness estimation.
For instance, computational models of early visual processing and
brightness estimation (Grossberg & Mingolla, 1985; Grossberg &
Todorovic, 1988) posit a role for disparity signals in constraining
filling-in mechanisms for brightness (Kelly & Grossberg, 2000).
Moreover, high-level theories of brightness (Adelson, 1993) and
lightness (e.g., Anderson & Winawer, 2005; Gilchrist, 1977; Knill
& Kersten, 1991) incorporate information about the three-dimen-
sional scene structure that is available from the image.

Here we sought to test the contribution of disparity-defined
three-dimensional scene information in guiding the impression of
brightness by employing a modified version of the paradigm devel-
oped by Paradiso and Nakayama. In particular, we asked whether
the brightness reduction induced by a mask was affected by the
depth configuration of the target and mask. We reasoned that if
brightness estimation takes place at a low level of processing (i.e.
before depth estimation has occurred) we would find no change in
the effect of a briefly presented mask when the mask and target
had the same or opposite disparity-defined slants. However, if
brightness estimation involves binocular disparity edge information,
we anticipated that masking would be greatest when the target and
mask where spatially coincident. In our first experiment we consid-
ered the effects of opposite slants for the target and mask. In experi-
ment two, we then examined the sensitivity of the masking effect to
gradations of slant differences between the target and mask.
2. Methods

2.1. Participants and apparatus

Eleven participants (including authors H.B. and V.P.) took part
in Experiment 1 (mean age = 27.7, SD = 4.58; 3 females) and nine
in Experiment 2 (mean age = 27.4, SD = 4.67; 1 female). All partici-
pants except the authors were naïve to the purpose of the study
and were recruited from staff and students at the University of
Birmingham and the University of Cambridge. All had normal or
corrected to normal vision, and provided written informed con-
sent. They were screened to ensure they could reliably discrimi-
nate depth positions defined by at least 1 arcmin of horizontal
disparity. The protocols for the experiment were approved by the
University of Birmingham’s STEM ethics committee. The work
was carried out in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki).

Stimuli were viewed through a mirror stereoscope, where the
two eyes viewed separate gamma corrected CRT (ViewSonic
FB2100X) monitors from a distance of 50 cm. Screen resolution
was 1600 � 1200 pixels at 100 Hz. Luminance calibration was
achieved by linearizing grey-level values using a Minolta LS110
photometer. Presentation monitors were recalibrated regularly to
ensure that stimulus luminance was constant for different partici-
pants and across experiments.
2.2. Stimuli and procedure

The stimuli were circular target disks (diameter = 12�) and a
mask which was an unfilled circle (diameter = 5.2�; line
width = 0.4�) (Fig. 1). One of the targets (the reference; ‘target 1’
in Fig. 1c) was a uniform disk (luminance of 101.7 cd/m2) while
the other target (the test; ‘target 2’ in Fig. 1c) had a centre-sur-
round configuration with a blurred interior boundary (see
Fig. 1b). The diameter of the centre portion was 5.2�, and we
applied blur to the boundary using a 2-D Gaussian-kernel of
FWHM = 0.2�. The luminance of the centre portion of the disk in
the test target was controlled by an adaptive staircase and varied
from 101.7 to 135 cd/m2; the surround had a constant luminance
of 101.7 cd/m2.

Prior to taking part in the experiment, participants were dark
adapted for 5 min, followed by two minutes of passive viewing on
a mid-level grey patch of 67.8 cd/m2 (this corresponded to the back-
ground luminance during stimulus presentation). Brightness judg-
ments were measured using a two interval forced choice paradigm
where the inter-stimulus interval (ISI) was 800 ms. During the refer-
ence interval, a single disc with a uniform luminance of 101.7 cd/m2

was presented for 60 ms. During the test interval, a target disc (with
variable luminance at its centre) was followed by the mask after a
pre-defined time interval (stimulus onset asynchrony – SOA). The
order of the reference and test stimulus presentation was ran-
domised. We measured luminance increment thresholds, defined
as the just noticeable difference. In particular, participants judged
whether the first or the second target had a brighter centre.
Thresholds were calculated using the QUEST staircase method
(Watson & Pelli, 1983) to obtain the 82% threshold. Luminance was
decreased after three successive correct responses, but increased
after one incorrect response (i.e., 3-up and 1-down staircase).

2.3. Masking properties

For the test interval presentations, a mask was presented after
the target stimulus (metacontrast backward masking; see
Breitmeyer & Ogmen, 2000, 2006). The mask was centred on the
target, and had the same diameter (5.2�) as the centre portion of
the target. The target and the mask remained on screen for
60 ms each, while the exact interval (SOA) between them was tai-
lored to individual participants (see Section 2.4 below).

2.4. Stimulus onset asynchrony (SOA) estimation

Prior to taking part in the main experiments, participants com-
pleted a session designed to estimate their SOA threshold. It is
known that masking is a function of the SOA (Alpern, 1953), with
little masking at either very short or long SOAs, but dramatic
reductions in target’s visibility in-between. Paradiso and
Nakayama (1991) tested the influence of SOA on brightness mask-
ing finding maximal effects for an SOA of 50–100 ms. Other studies
on backward masking find SOA time-windows for optimal target
suppression vary in the range 30 and 150 ms (Breitmeyer &
Ogmen, 2006, p. 38; Green et al., 2005; Polat, Sterkin, &
Yehezkel, 2007), with differences between individual participants.
We therefore chose to tailor the maximal masking effect by
identifying optimal values for each participant.

This testing session consisted of three blocks of 50 trials. Stimuli
were orientated in the fronto-parallel plane. The participants’ task
was to indicate which interval had the brighter centre, and we esti-
mated increment thresholds that gave the maximum masking
effect using the QUEST method. We found that estimated SOA
thresholds for two participants exceeded 250 ms, which is outside
the range expected for genuine metacontrast masking. We retested
these (naïve) participants in a second session and again found SOA



Fig. 1. (a) A cartoon illustration of the target and its depth configuration. The target and masking stimuli were slanted in depth around a horizontal axis. (b) Illustration of the
luminance profiles for the ‘test’ interval stimuli presented in the study. (c) The time sequence of stimulus presentation on a typical trial. Stimuli are depicted in the frontal
plane for ease of representation; however for Experiment 1 both target and mask stimuli were slanted, and for Experiment 2 the masks were slanted in depth.
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thresholds in excess of 250 ms. We therefore excluded them from
further study. For the remaining nine participants, the mean esti-
mated SOA was 116.7 ms (SEM = 4.4).

2.5. Main experimental conditions

In Experiment 1 we tested how the relationship between the
slant of the target and the mask affected brightness estimation.
We presented targets and masks that were slanted in depth
(±45�) with respect to the fronto-parallel plane (Fig. 2a provides
stereograms for cross-fusion). We varied whether the target and
the mask had the same or opposite slants, resulting in four differ-
ent stimulus configurations (Fig. 2b). We measured thresholds by
averaging over ten blocks (three participants) or four blocks (six
participants) of 200 trials each. The different conditions were ran-
domly interleaved during an individual run.

To ensure that any possible differences in masking were due to
the slant of the surface, we included a control condition in which
we measured masking for binocular presentation of the images
viewed by the left eye in the main experiment 1. In particular,
the disparity applied to the stimuli would create small offsets
between the edges of the mask and target when they had binocu-
larly specified opposite slants while edges would be aligned for
stimuli with the same slant. Thus, we measured whether dif-
ferential masking caused by these small, monocularly available sig-
nals might affect masking for ‘same’ and ‘opposite’ slant
conditions. As the identical images were presented to both eyes
in this condition, the stimuli had no binocular disparity and
appeared flat. Thresholds were calculated as mean performance
over ten blocks for three observers and over four blocks for six
observers.
3. Results

3.1. Experiment 1

In experiment 1, we were interested in examining whether
brightness masking would be stronger when the target and mask
shared the same 3-D orientation. We measured just noticeable dif-
ference thresholds for the central portion of the target disc. Raw
(luminance measured in cd/m2) data for each participant are
shown in Fig. 3a. Although there is variability between individuals,
these data reveal that for 7 out of the 9 participants, thresholds
were elevated (stronger brightness masking) in the ‘same’ condi-
tions, where the target and the mask shared 3D orientations, com-
pared to the orthogonal conditions. In order to remove the
variability in overall thresholds between participants, we nor-
malised (per participant) the data by dividing each luminance
threshold for the experimental conditions by the mean luminance
thresholds measured in the no-disparity control conditions.

The average (normalised) discrimination thresholds from
Experiment 1 are shown in Fig. 3b. We found that thresholds were
higher in the conditions where the target and mask had the same
slant orientations, compared to the conditions where their slants
were orthogonal. In particular, using a 2 (slant congruence: same
vs. orthogonal) � 2 (slant sign: positive vs. negative) repeated-
measures ANOVA we found that there was a main effect of tar-
get-mask congruence (F(1,8) = 6.06, p = .039), but no effect of slant
sign (F(1,8) = 1.35, p = .278) and no interaction (F(1,8) < 1,
p = .730).

Considering data from the control condition in which there was
no difference in the slant of the target and mask (the stimuli
appeared frontoparallel), we found no effect of slant congruence



Fig. 2. (a) Stereogram illustrating a sample of the monocular views of the stimuli of experiment 1. (b) Illustration of the target and mask configurations for Experiment 1. The
control experiment consisted of the same conditions, but the stimuli had no binocular disparity/3-D information, since each eye viewed the same stereo half image.

Fig. 3. (a) Raw discrimination thresholds across the ‘same’ and ‘orthogonal’ stimuli configurations for the main and the no-disparity control experiments for all nine
participants (left panels). Raw thresholds for the three additional participants across the 45� slants and the flat conditions for the no-masking control (right panel). The dotted
continuous line represents the constant luminance of the reference target surface whose brightness was compared with the test target throughout the experimental
conditions. Individual participants are indicated by each plotting symbol; black and grey filled circles represent data from authors HB and VP. (b) Average discrimination
thresholds as a function of stimulus configurations for the main experiment and the no-disparity control conditions. Threshold values here are normalised by dividing each
luminance (cd/m2) value by the mean luminance measured in the control conditions, for each participant. Statistically significant differences are indicated by an asterisk.
Error bars show the between-subjects standard error of the mean.
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on the extent of masking (F(1,8) < 1, p = .935), nor slant sign
(F(1,8) < 1, p = .881) or an interaction (F(1,8) < 1, p = .935). This
suggests that the masking effect observed in the stereoscopically
defined condition could not be attributed to subtle differences in
the monocular images, but rather is due to the extraction of
binocular signals.

In addition, to evaluate the effectiveness of masking per se in
our paradigm, we conducted a control, no-masking, experiment
on three participants. We preserved the standard experimental
configurations of the target (�45 and 45� slants) and also pre-
sented a flat condition (target appearing with zero slant), where
none of the targets/conditions was followed by mask. The mean
increment thresholds in this no-masking control was 105.4 cd/
m2, i.e., the just noticeable difference (jnd) was 3.7 cd/m2 (refer-
ence target’s luminance being 101.7 cd/m2). In contrast, in the
main experiment, the mean threshold was 114.2 cd/m2 (jnd of
12.5 cd/m2).

Inspecting Fig. 3a and comparing the results from the ‘same’
condition in the main experiment (±45� slant) and the ‘same’ con-
dition in the no-disparity control condition (frontoparallel stimuli),
might suggest that brightness masking is slightly higher for slanted
targets. However, there was no reliable difference between the two
conditions (mean threshold in main condition = 114.2 cd/m2 vs.
114.9 cd/m2 in the control). A repeated-measures ANOVA con-
firmed that there were no statistically significant differences
(F(1,8) < 1, p = .57).
Fig. 4. (a) Illustration of the stimulus configuration for experiment 2. The target had
zero disparity, appearing flat, across all the conditions. The mask had different
slants with respect to the target (0, ±22.5 and ±45�) resulting in five target-mask
configurations. As the figure shows, we controlled the spatial extent of the mask so
that it covered the same spatial extent irrespectively of the slant. (b) Between-
subjects average thresholds in the five individual experimental conditions
expressed in measured luminance. (c) Average normalised thresholds data for the
different slant levels. Statistically significant differences are indicated by an
asterisk. Error bars show the between-subjects standard error of the mean.
3.2. Experiment 2

In our second experiment we sought to determine whether the
mask interferes with the target only when stimuli share the same
slant, or whether interference occurs when the target and mask are
slightly misaligned. We therefore presented a frontoparallel (0�
angle) target stimulus, and then masks of different slant angles
with respect to it (0, ±22.5 or ±45�; Fig. 4a). We measured thresh-
olds by averaging over four blocks of 250 trials each, while condi-
tions in each block were randomly interleaved. A repeated-
measures ANOVA showed that masking was stronger (higher
thresholds; see Fig. 4b) when the mask and target shared the same
frontoparallel orientation compared to the slanted conditions of
the mask [F(4,32) = 5.12, p < .01].

We normalised the data to remove between participant vari-
ability (as described for Experiment 1), and grouped opposing slant
values (Fig. 4c). We found an effect of slant on brightness masking:
a one-way ANOVA (with 45, 22.5 and 0� conditions as factors)
showed a significant effect of magnitude [F(2,16) = 8.87, p < .01].
Post-hoc analysis using Bonferroni correction for multiple compar-
isons indicated a significant difference between zero and 45� slant
(p < .01), but not between zero and 22.5� (p = .087), or between 45
and 22.5� conditions (p = .557). These results indicate that masking
is weakest (decreased thresholds) when the target and mask are
spatially misaligned (45�).
4. Discussion

In the present study, we investigated whether brightness esti-
mation incorporates the 3-D information of disparity-defined
slanted surfaces. We used a masking paradigm to examine whether
the disruption of brightness estimation from backward masking is
modulated by the slant configurations of target and mask stimuli.
We report an influence of surface slant on brightness masking.
Specifically, in experiment 1, we found targets and masks that
shared the same 3-D orientation produced a greater attenuation
of brightness. Moreover, a no-disparity control condition indicated
that this difference could not be explained by subtle image
differences at the monocular level. Experiment 2 examined how
sensitive this effect was to the precise 3-D orientation of the mask-
ing surfaces. While we found an influence of mask orientation on
brightness, we did not observe a tight tuning of the effect to the
precise slant angle. More generally, it is important to note that
the modulation of masking by changes in surface slant was small.
Thus, it is likely that brightness estimation involves a substantial
monocular component, with a relatively minor contribution from
disparity-defined surface structure information. These results sug-
gest that brightness estimation is at least partially mediated by
mid-level neuronal mechanisms where disparity edge signals have
been extracted.
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While our approach is grounded in the work of Paradiso and
Nakayama (1991), it is important to note differences existed in
the stimulus configuration between the two studies: Paradiso
and Nakayama used uniform surfaces and asked participants to
make brightness matches using the method of adjustment. Here,
we used a centre-surround configured test target (‘target 2’ in
Fig. 1c) whose central area, without masking, appeared brighter
than the surround. We asked participants whether this central area
was brighter than the corresponding area of the reference target
(‘target 1’ in Fig. 1c). The test target was followed by a mask,
whereas the reference was followed by no mask and also had uni-
form and constant luminance. Thereby we sought to use a staircase
procedure to quantify the masking effects. Our approach of using a
bipartite stimulus may be responsible for the relatively modest
masking effects we observe in this study. Paradiso and Nakayama
reported masking effects that could approach two orders of magni-
tude (although their stimuli were considerably more luminous
than we could achieve on our setup). It is possible that backwards
masking was weaker in our study because brightness propagation
could have started inside the masked region from the central por-
tion of the disk. Our use of blurred boundaries between the two
portions of the disk was intended to attenuate any such effect,
and it is important to consider that while this effect may have been
present at the start of an experimental session (i.e., large lumi-
nance difference between centre and surround), the contribution
of an interior boundary signal would be considerably reduced as
the luminance contrast between the centre and surround was
adaptively reduced by the staircase algorithm.

Our data suggest that binocular disparity edges modulate the
degree of disruption that backward masking causes to the estima-
tion of a surface’s brightness. Apparent brightness has been
strongly associated with a propagation (‘filling-in’) process.
Previous work suggests that active filling-in processes are unlikely
to explain the perceptual filling-in of motion and depth informa-
tion (Welchman & Harris, 2003) given lower spatial resolution of
these signals. Nevertheless, the current study suggests a modest
role for disparity-defined edge structure in modulating brightness
estimation. This can be framed within the framework of Grossberg
(1994) model according to which, once the boundaries of surfaces
are registered, the 3-D surfaces are filled-in/generated at a stage
not earlier than area V4.
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