336 research outputs found

    Helical structures from an isotropic homopolymer model

    Full text link
    We present Monte Carlo simulation results for square-well homopolymers at a series of bond lengths. Although the model contains only isotropic pairwise interactions, under appropriate conditions this system shows spontaneous chiral symmetry breaking, where the chain exists in either a left- or a right-handed helical structure. We investigate how this behavior depends upon the ratio between bond length and monomer radius.Comment: 10 pages, 3 figures, accepted for publication by Physical Review Letter

    Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes

    Get PDF
    Pathogens such as Pseudomonas aeruginosa advantageously modify animal host physiology, for example, by inhibiting host protein synthesis. Translational inhibition of insects and mammalian hosts by P. aeruginosa utilizes the well-known exotoxin A effector. However, for the infection of Caenorhabditis elegans by P. aeruginosa, the precise pathways and mechanism(s) of translational inhibition are not well understood. We found that upon exposure to P. aeruginosa PA14, C. elegans undergoes a rapid loss of intact ribosomes accompanied by the accumulation of ribosomes cleaved at helix 69 (H69) of the 26S ribosomal RNA (rRNA), a key part of ribosome decoding center. H69 cleavage is elicited by certain virulent P. aeruginosa isolates in a quorum sensing (QS)-dependent manner and independently of exotoxin A-mediated translational repression. H69 cleavage is antagonized by the 3 major host defense pathways defined by the pmk-1, fshr-1, and zip-2 genes. The level of H69 cleavage increases with the bacterial exposure time, and it is predominantly localized in the worm\u27s intestinal tissue. Genetic and genomic analysis suggests that H69 cleavage leads to the activation of the worm\u27s zip-2-mediated defense response pathway, consistent with translational inhibition. Taken together, our observations suggest that P. aeruginosa deploys a virulence mechanism to induce ribosome degradation and H69 cleavage of host ribosomes. In this manner, P. aeruginosa would impair host translation and block antibacterial responses

    Comprehensive Software Simulation on Ground Power Supply for Launch Pads and Processing Facilities at NASA Kennedy Space Center

    Get PDF
    A multi-threaded software application has been developed in-house by the Ground Special Power (GSP) team at NASA Kennedy Space Center (KSC) to separately simulate and fully emulate all units that supply VDC power and battery-based power backup to multiple KSC launch ground support systems for NASA Space Launch Systems (SLS) rocket

    The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans

    Get PDF
    BACKGROUND: Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C. elegans to provide evolutionary insights into host-pathogen relationships. RESULTS: Natural isolates of P. aeruginosa that exhibit diverse genomes display a broad range of virulence towards C. elegans. Using gene association and genetic analysis, we identify accessory genome elements that correlate with virulence, including both known and novel virulence determinants. Among the novel genes, we find a viral-like mobile element, the teg block, that impairs virulence and whose acquisition is restricted by CRISPR-Cas systems. Further genetic and genomic evidence suggests that spacer-targeted elements preferentially associate with lower virulence while the presence of CRISPR-Cas associates with higher virulence. CONCLUSIONS: Our analysis demonstrates substantial strain variation in P. aeruginosa virulence, mediated by specific accessory genome elements that promote increased or decreased virulence. We exemplify that viral-like accessory genome elements that decrease virulence can be restricted by bacterial CRISPR-Cas immune defense systems, and suggest a positive, albeit indirect, role for host CRISPR-Cas systems in virulence maintenance

    Analysis of Local and Global Aromaticity in Si3C5 and Si4C8 Clusters. Aromatic Species Containing Planar Tetracoordinate Carbon

    Get PDF
    The minimum energy structures of the Si3C5 and Si4C8 clusters are planar and contain planar tetracoordinate carbons (ptCs). These species have been classified, qualitatively, as global (π) and local (σ) aromatics according to the adaptive natural density partitioning (AdNDP) method, which is an orbital localization method. This work evaluates these species’ aromaticity, focusing on confirming and quantifying their global and local aromatic character. For this purpose, we use an orbital localization method based on the partitioning of the molecular space according to the topology of the electronic localization function (LOC-ELF). In addition, the magnetically induced current density is analyzed. The LOC-ELF-based analysis coincides with the AdNDP study (double aromaticity, global, and local). Moreover, the current density analysis detects global and local ring currents. The strength of the global and local current circuit is significant, involving 4n + 2 π- and σ-electrons, respectively. The latter implicates the Si-ptC-Si fragment, which would be related to the 3c-2e σ-bond detected by the orbital localization methods in this fragment.Fil: Torres Vega, Juan J.. Universidad Nacional Mayor de San Marcos; PerĂșFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; ArgentinaFil: Vasquez Espinal, A.. Universidad AndrĂ©s Bello; ChileFil: Baez Grez, R.. Universidad AndrĂ©s Bello; ChileFil: Lain, Luis. Universidad del PaĂ­s Vasco; EspañaFil: Torre, Alicia. Universidad del PaĂ­s Vasco; EspañaFil: GarcĂ­a, Victor RaĂșl. Universidad Nacional Mayor de San Marcos; PerĂș. Universidad AndrĂ©s Bello; ChileFil: Tiznado, William. Universidad AndrĂ©s Bello; Chil

    Optimization of MicroCT Imaging and Blood Vessel Diameter Quantitation of Preclinical Specimen Vasculature with Radiopaque Polymer Injection Medium

    Get PDF
    Vascular networks within a living organism are complex, multi-dimensional, and challenging to image capture. Radio-angiographic studies in live animals require a high level of infrastructure and technical investment in order to administer costly perfusion mediums whose signals metabolize and degrade relatively rapidly, diminishing within a few hours or days. Additionally, live animal specimens must not be subject to long duration scans, which can cause high levels of radiation exposure to the specimen, limiting the quality of images that can be captured. Lastly, despite technological advances in live-animal specimen imaging, it is quite difficult to minimize or prevent movement of a live animal, which can cause motion artifacts in the final data output. It is demonstrated here that through the use of postmortem perfusion protocols of radiopaque silicone polymer mediums and ex-vivo organ harvest, it is possible to acquire a high level of vascular signal in preclinical specimens through the use of micro-computed tomographic (microCT) imaging. Additionally, utilizing high-order rendering algorithms, it is possible to further derive vessel morphometrics for qualitative and quantitative analysis

    Diversity, distribution and natural Leishmania infection of sand flies from communities along the Interoceanic Highway in the Southeastern Peruvian Amazon

    Get PDF
    The Peruvian-Brazilian border is a highly endemic tegumentary leishmaniasis region in South America. The interoceanic highway is a commercial route that connects Peru and Brazil through Madre de Dios and has raised concerns about its impact on previously undisturbed areas. In order to assess leishmaniasis transmission risk along this highway, we conducted a surveillance study of the sand fly populations in this area. Sand flies were collected between 2009 and 2010 along transects at 200 m, 600 m and 1000 m from six study sites located along the highway (Iberia, La Novia, Alto Libertad, El Carmen, Florida Baja, Mazuko and Mavila) and an undisturbed area (Malinowski). Collected specimens were identified based on morphology and non-engorged females of each species were pooled and screened by kinetoplast PCR to detect natural Leishmania infections. A total of 9,023 specimens were collected belonging to 54 different Lutzomyia species including the first report of Lu. gantieri in Peru. Four species accounted for 50% of all specimens (Lutzomyia carrerai carrerai, Lu. davisi, Lu. shawi and Lu. richardwardi). El Carmen, Alto Libertad, Florida Baja and Malinowski presented higher Shannon diversity indexes (H = 2.36, 2.30, 2.17 and 2.13, respectively) than the most human disturbed sites of Mazuko and La Novia (H = 1.53 and 1.06, respectively). PCR detected 10 positive pools belonging to Lu. carrerai carrerai, Lu. yuilli yuilli, Lu. hirsuta hirsuta, Lu. (Trichophoromyia) spp., and Lu. (Lutzomyia) spp. Positive pools from 1,000 m transects had higher infectivity rates than those from 600 m and 200 m transects (9/169 = 5.3% vs 0/79 = 0% and 1/127 = 0.8%, p = 0.018). El Carmen, accounted for eight out of ten positives whereas one positive was collected in Florida Baja and Mazuko each. Our study has shown differences in sand fly diversity, abundance and species composition across and within sites. Multiple clustered Lutzomyia pools with natural Leishmania infection suggest a complex, diverse and spotty role in leishmaniasis transmission in Madre de Dios, with increased risk farther from the highway

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore