121 research outputs found

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877

    Identification of Tumor Suppressors and Oncogenes from Genomic and Epigenetic Features in Ovarian Cancer

    Get PDF
    The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates

    Integrated Analyses of Copy Number Variations and Gene Expression in Lung Adenocarcinoma

    Get PDF
    Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Identification of prognostic biomarkers for lung cancer using gene expression microarrays poses a major challenge in that very few overlapping genes have been reported among different studies. To address this issue, we have performed concurrent genome-wide analyses of copy number variation and gene expression to identify genes reproducibly associated with tumorigenesis and survival in non-smoking female lung adenocarcinoma. The genomic landscape of frequent copy number variable regions (CNVRs) in at least 30% of samples was revealed, and their aberration patterns were highly similar to several studies reported previously. Further statistical analysis for genes located in the CNVRs identified 475 genes differentially expressed between tumor and normal tissues (p<10−5). We demonstrated the reproducibility of these genes in another lung cancer study (p = 0.0034, Fisher's exact test), and showed the concordance between copy number variations and gene expression changes by elevated Pearson correlation coefficients. Pathway analysis revealed two major dysregulated functions in lung tumorigenesis: survival regulation via AKT signaling and cytoskeleton reorganization. Further validation of these enriched pathways using three independent cohorts demonstrated effective prediction of survival. In conclusion, by integrating gene expression profiles and copy number variations, we identified genes/pathways that may serve as prognostic biomarkers for lung tumorigenesis

    MC EMiNEM Maps the Interaction Landscape of the Mediator

    Get PDF
    The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is based on Nested Effects Models (NEMs), a class of probabilistic graphical models that extends the idea of hierarchical clustering. It combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM) algorithm for NEMs to increase sensitivity compared to existing methods. A meta-analysis of four Mediator perturbation studies in Saccharomyces cerevisiae, three of which are unpublished, provides new insight into the Mediator signaling network. In addition to the known modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering of its internal information flow, which is putatively transmitted through structural changes within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only local structural changes upon perturbation, while the C-terminus of Med7 and Med19 appear to play a central role. MC EMiNEM associates Mediator subunits to most directly affected genes, which, in conjunction with gene set enrichment analysis, allows us to construct an interaction map of Mediator subunits and transcription factors

    Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential

    Get PDF
    corecore