21 research outputs found

    The Origin of the Size Effect in the Oxidation of CO on Supported Palladium Nanoparticles

    No full text
    Two Pd/TiO2 catalysts with mean particle sizes of 1 and 3 nm were prepared and tested in the low-temperature oxidation of CO. It was found that the first catalyst with higher dispersion is more active. Turnover frequencies varied for these catalysts by almost six times. In contrast, the apparent activation energy of the oxidation of CO on the catalyst with smaller Pd nanoparticles was estimated at 76 kJ/mol, and for the catalyst with larger Pd nanoparticles at 58 kJ/mol. According to in situ XANES studies, the particle size effect originates from the oxidation of small palladium nanoparticles under reaction conditions, whereas larger nanoparticles are stable and consist of palladium atoms mainly in the metallic state. Palladium oxide is more active in the low-temperature oxidation of CO than metallic palladium. This means that the origin of size-dependent activity of Pd nanoparticles in the low-temperature oxidation of CO is associated with the change in the chemical composition of nanoparticles that leads to a change in the reaction mechanism and, as a result, in their activity

    Hydroprocessing of Maya vacuum residue using a NiMo catalyst supported on Cr-doped alumina

    No full text
    6 figures, 7 tables.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Mesoporous alumina was doped with Cr using a co-precipitation method to prepare a support for hydrocracking catalysts. Ni and Mo were then impregnated on Cr-doped mesoporous alumina (NiMo/Al2O3-Cr). Catalytic activity was tested in hydrodeasphaltenisation (HDA), hydrodesulfurisation (HDS) and hydrodemetallisation (HDM) of Maya vacuum residue in a batch reactor and compared with NiMo supported on mesoporous alumina not doped with Cr (NiMo/Al2O3). Following activation and initial carbon deposition, experiments involving contact of the catalysts with fresh feed were performed. Greater HDA extent and maltene to asphaltene ratios were obtained with NiMo/Al2O3-Cr than NiMo/Al2O3 despite a larger amount of coke deposits. Significant activity of both NiMo/Al2O3-Cr and NiMo/Al2O3 towards HDS and HDM were also observed. Alumina textural properties remained relatively unaffected by the co-precipitation of Cr. X-ray photoelectron spectroscopy (XPS) showed that the catalysts contained Cr3+ and after reduction all Ni was present in metallic state at least in the near-surface region, while Mo6+ was reduced to Mo4+ and Moδ+ (0 ≤ δ ≤ 3) to a larger extent in NiMo/Al2O3-Cr. Lower reduction temperatures in the presence of Cr were determined, suggesting a larger number of metal sites available in reduced form at operating conditions. It was found that Cr aided metal dispersion in catalyst synthesis and coke dispersion during reaction. Spent catalysts showed reductions in surface area and pore volume. However, while spent NiMo/Al2O3 catalysts had a decrease in average pore diameter (APD), NiMo/Al2O3-Cr maintained the fresh material APD, which may explain the sustained catalytic activity.H.P. thanks the support of CONACYT Mexico for the award of her PhD grant. Founding from Skolkovo Foundation and BP through UNIHEAT Project is gratefully acknowledged.Peer reviewe

    XPS and cathodoluminescence studies of HfO

    No full text
    X-ray photoelectron spectroscopy (XPS) and cathodoluminescence (CL) method have been employed to study the chemical composition and the oxygen vacancy concentration of HfO2, Sc2 O3 and (HfO2)1−x(Sc2O3)x films. It was found that the increase of Sc content led to monotonic decreasing the Hf4f7/2 and Sc2p3/2 binding energies indicating to form solid solution (HfO2)1−x(Sc2O3)x. All the samples characterized by the intensive CL spectra with maximum around 3 eV which originated due to some radiative recombination emission caused by oxygen deficiency. The concentration of oxygen vacancy in the Sc-doped HfO2 is sensitive to the Sc content and as a result the intensity of CL spectra of (HfO2)1−x(Sc2O3)x is lower that those of pure HfO2 and Sc2O3

    Mechanistic Study of Methanol Decomposition and Oxidation on Pt(111)

    No full text
    Decomposition and oxidation of methanol on Pt(111) have been examined between 300 and 650 K in the millibar pressure range using in situ ambient-pressure X-ray photoelectron spectroscopy (XPS) and temperature-programmed reaction spectroscopy (TPRS). It was found that even in the presence of oxygen, the methanol decomposition on platinum proceeds through two competitive routes: fast dehydrogenation to CO and slow decomposition via the C–O bond scission. The rate of the second route is significant in the millibar pressure range, which leads to a blocking of the platinum surface by carbon and to the prevention of further methanol conversion. As a result, without oxygen, the activity of Pt(111) converted to a turnover frequency is ∼0.3 s<sup>–1</sup> at 650 K. The activity strongly increases with oxygen content, achieving 20 s<sup>–1</sup> in an oxygen-rich mixture. The main products of methanol oxidation were CO, CO<sub>2</sub>, H<sub>2</sub>, and H<sub>2</sub>O. The CO selectivity as well as the H<sub>2</sub> selectivity decrease with the increase in oxygen content. It means that the main reaction route is the methanol dehydrogenation to CO and hydrogen; however, in the presence of oxygen, CO oxidizes to CO<sub>2</sub> and hydrogen oxidizes to water. At room temperature, the C1s spectra contain weak features of formate species. This finding points out that the “non-CO-involved” pathway of methanol oxidation realizes on platinum as well. However, the TPRS data indicate that at least under the oxygen-deficient conditions the methanol dehydrogenation pathway dominates. A detailed reaction mechanism of the decomposition and oxidation of methanol agreeing with XPS and TPRS data is discussed

    CuFeAl Nanocomposite Catalysts for Coal Combustion in Fluidized Bed

    No full text
    A method of oil-drop granulation was suggested for the preparation of spherical CuFeAl nanocomposite catalysts. The catalysts were characterized by a set of physicochemical methods (X-ray diffraction, temperature-programmed reduction by H2, low-temperature nitrogen adsorption, crushing strength) and tested in the oxidation of CO and burning of brown coal in a fluidized bed. It was found that the catalysts have high mechanical strength (16.2 MPa), and their catalytic properties in the oxidation of CO are comparable to the characteristics of industrial Cr-containing catalysts. It was shown that the addition of pseudoboehmite at the stage of drop formation contributes to the production of uniform spherical high-strength granules and facilitates the stabilization of the phase state of the active component. The use of CuFeAl nanocomposite catalysts for the burning of brown coal provides a low emission of CO (600 ppm) and NOx (220 ppm) and a high degree of coal burnout (95%), which are close to those of the industrial Cr-containing catalysts (emission of CO is 700 ppm, NOx&mdash;230 ppm, and degree of coal burnout is 95%)

    Theoretical Study of the Methanol Dehydrogenation on Platinum Nanocluster

    Get PDF
    Методом функционала плотности изучена реакция дегидрирования метанола по механизму разрыва O-H-связи на нанокластере платины Pt79, проведено сравнение с идеальной поверхностью Pt(111). Найдено, что наиболее устойчивые комплексы образуются при адсорбции COНх (x = 1-4) частиц на низкокоординированных атомах нанокластера Pt79, при этом такой предпочтительности для атомов Н не обнаружено. Абсолютные значения энергии адсорбции на вершинах и ребрах нанокластера Pt79 выше на 0,2–0,7 эВ, чем на высококоординированных центрах регулярной поверхности Pt(111). Стабильность адсорбционных комплексов на поверхности нанокластера уменьшается от вершин к ребрам и затем к центру граней (111) нанокластера. Анализ энергетического профиля реакции показывает, что тепловой эффект образования ключевого интермедиата CH3O на кластере Pt79 становится нулевым в отличие от эндотермического (0,5 эВ) на регулярной поверхности Pt(111). Экзотермический эффект всех остальных реакционных стадий, за исключением десорбции СО, на нанокластере увеличивается на ~0,2-0,5 эВThe methanol dehydrogenation through the initial breaking of the O-H bond at Pt79 nanoparticle was studied with the DFT method. The comparison with an ideal surface of Pt (111) was carried out. The most stable complexes were found for COНх (x = 1-4) species adsorbed at low-coordinated atoms of nanocluster Pt79, whereas no preference for adsorption at corners and edges for Н atoms was found. The absolute adsorption energies of COНх species at corner and edge sites of platinum nanocluster increased by 0.2–0.7 eV in comparison with high-coordinated sites of the regular Pt(111) surface. The stabilization effect of adsorption at the nanoparticle decreases from corners to edges and then to the center of (111) facet. According to the reaction energy profile, the thermal effect of the formation of CH3O at the nanocluster becomes close to zero, in contrast to the endothermic effect (0.5 eV) on the regular Pt(111) surface. The exothermic effects for other reaction stages at the platinum nanocluster, excluding CO desorption, increase by ~0.2-0.5 e

    Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study

    No full text
    In this study, 3%Pd/Al2O3, 3%Pt/Al2O3 and bimetallic (1%Pd + 2%Pt)/Al2O3 catalysts were examined in the total oxidation of methane in a temperature range of 150&ndash;400 &deg;C. The evolution of the active component under the reaction conditions was studied by transmission electron microscopy and in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. It was found that the platinum and bimetallic palladium-platinum catalysts are more stable against sintering than the palladium catalysts. For all the catalysts, the active component forms a &ldquo;core-shell&rdquo; structure in which the metallic core is covered by an oxide shell. The &ldquo;core-shell&rdquo; structure for the platinum and bimetallic palladium-platinum catalysts is stable in the temperature range of 150&ndash;400 &deg;C. However, in the case of the palladium catalysts the metallic core undergoes the reversible oxidation at temperatures above 300 &deg;C and reduced to the metallic state with the decrease in the reaction temperature. The scheme of the active component evolution during the oxidation of methane is proposed and discussed

    Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol

    No full text
    In this study, we have proposed titania-based photocatalysts modified with copper compounds for hydrogen evolution. Thermal pre-treatment of commercial TiO2 Degussa P25 (DTiO2) and Hombifine N (HTiO2) in the range from 600 to 800 &deg;C was carried out followed by the deposition of copper oxides (1&ndash;10 wt. % of Cu). The morphology and chemical state of synthesized photocatalysts were studied using X-ray diffraction, UV&ndash;Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and XANES/EXAFS X-ray absorption spectroscopy. Photocatalytic activity was tested in the hydrogen evolution from aqueous solutions of glycerol under ultraviolet (&lambda; = 381 nm) and visible (&lambda; = 427 nm) light. The photocatalysts 2% CuOx/DTiO2 T750 and 5% CuOx/DTiO2 T700 showed the highest activity under UV irradiation (&lambda; = 380 nm), with the rate of H2 evolution at the level of 2.5 mmol (H2) g&minus;1 h&minus;1. Under the visible light irradiation (&lambda; = 427 nm), the highest activity of 0.6 mmol (H2) g&minus;1 h&minus;1 was achieved with the 5% CuOx/DTiO2 T700 photocatalyst. The activity of these photocatalysts is 50% higher than that of the platinized 1% Pt/DTiO2 sample. Thus, it was shown for the first time that a simple heat treatment of a commercial titanium dioxide in combination with a deposition of non-noble metal particles led to a significant increase in the activity of photocatalysts and made it possible to obtain materials that were active in hydrogen production under visible light irradiation
    corecore