106 research outputs found
Structure and Spin Dynamics of LaSrMnO
Neutron scattering has been used to study the structure and spin dynamics of
LaSrMnO. The magnetic structure of this system is
ferromagnetic below T_C = 235 K. We see anomalies in the Bragg peak intensities
and new superlattice peaks consistent with the onset of a spin-canted phase
below T_{CA} = 205 K, which appears to be associated with a gap at q = (0, 0,
0.5) in the spin-wave spectrum. Anomalies in the lattice parameters indicate a
concomitant lattice distortion. The long-wavelength magnetic excitations are
found to be conventional spin waves, with a gapless (< 0.02 meV) isotropic
dispersion relation . The spin stiffness constant D has a
dependence at low T, and the damping at small q follows . An
anomalously strong quasielastic component, however, develops at small wave
vector above 200 K and dominates the fluctuation spectrum as T -> T_C. At
larger q, on the other hand, the magnetic excitations become heavily damped at
low temperatures, indicating that spin waves in this regime are not eigenstates
of the system, while raising the temperature dramatically increases the
damping. The strength of the spin-wave damping also depends strongly on the
symmetry direction in the crystal. These anomalous damping effects are likely
due to the itinerant character of the electrons.Comment: 8 pages (RevTex), 9 figures (encapsulated postscript
Neutron and X-ray evidence of charge melting in ferromagnetic layered colossal magnetoresistance manganites
Recent x-ray and neutron scattering studies have revealed static diffuse scattering due to polarons in the paramagnetic phase of the colossal magnetoresistive manganites La2-2xSr1+2xMn2O7, with x = 0.40 and 0.44. We show that the polarons exhibit short-range incommensurate correlations that grow with decreasing temperature, but disappear abruptly at the combined ferromagnetic and metal-insulator transition in the x = 0.40 system because of the sudden charge delocalization, while persisting at low temperature in the antiferromagnetic x = 0.44 system. The "melting" of the polaron ordering as we cool through T-C occurs with the collapse of the polaron scattering itself in the x = 0.40 system. This short-range polaron order is characterized by an ordering wave vector q = (0.3,0,1) that is almost independent of x for x greater than or equal to 0.38, and is consistent with a model of disordered stripes. (C) 2001 American Institute of Physics
Dopant-dependent impact of Mn-site doping on the critical-state manganites: R0.6Sr0.4MnO3 (R=La, Nd, Sm, and Gd)
Versatile features of impurity doping effects on perovskite manganites,
SrMnO, have been investigated with varying the doing
species as well as the -dependent one-electron bandwidth. In
ferromagnetic-metallic manganites (=La, Nd, and Sm), a few percent of Fe
substitution dramatically decreases the ferromagnetic transition temperature,
leading to a spin glass insulating state with short-range charge-orbital
correlation. For each species, the phase diagram as a function of Fe
concentration is closely similar to that for SrMnO
obtained by decreasing the ionic radius of site, indicating that Fe doping
in the phase-competing region weakens the ferromagnetic double-exchange
interaction, relatively to the charge-orbital ordering instability. We have
also found a contrastive impact of Cr (or Ru) doping on a spin-glass insulating
manganite (=Gd). There, the impurity-induced ferromagnetic magnetization is
observed at low temperatures as a consequence of the collapse of the inherent
short-range charge-orbital ordering, while Fe doping plays only a minor role.
The observed opposite nature of impurity doping may be attributed to the
difference in magnitude of the antiferromagnetic interaction between the doped
ions.Comment: 7 pages, 6 figure
Spin Dynamics of the Magnetoresistive Pyrochlore Tl_2Mn_2O_7
Neutron scattering has been used to study the magnetic order and spin
dynamics of the colossal magnetoresistive pyrochlore Tl_2Mn_2O_7. On cooling
from the paramagnetic state, magnetic correlations develop and appear to
diverge at T_C (123 K). In the ferromagnetic phase well defined spin waves are
observed, with a gapless ( meV) dispersion relation E=Dq^{2} as
expected for an ideal isotropic ferromagnet. As T approaches T_C from low T,
the spin waves renormalize, but no significant central diffusive component to
the fluctuation spectrum is observed in stark contrast to the
La(Ca,Ba,Sr)MnO system. These results argue strongly that the
mechanism responsible for the magnetoresistive effect has a different origin in
these two classes of materials.Comment: 4 pages (RevTex), 4 figures (encapsulated postscript), to be
published in Phys. Rev. Let
Charge melting and polaron collapse in
X-ray and neutron scattering measurements directly demonstrate the existence
of polarons in the paramagnetic phase of optimally-doped colossal
magnetoresistive oxides. The polarons exhibit short-range correlations that
grow with decreasing temperature, but disappear abruptly at the ferromagnetic
transition because of the sudden charge delocalization. The "melting" of the
charge ordering as we cool through occurs with the collapse of the
quasi-static polaron scattering, and provides important new insights into the
relation of polarons to colossal magnetoresistance.Comment: 4 pages (RevTex), 3 postscript-formatted figures (Figs. 1 and 2 are
color figures
Orbital Structure and Magnetic Ordering in Layered Manganites: Universal Correlation and Its Mechanism
Correlation between orbital structure and magnetic ordering in bilayered
manganites is examined. A level separation between the and
orbitals in a Mn ion is calculated in the ionic model for a
large number of the compounds. It is found that the relative stability of the
orbitals dominates the magnetic transition temperatures as well as the magnetic
structures. A mechanism of the correlation between orbital and magnetism is
investigated based on the theoretical model with the two orbitals under
strong electron correlation.Comment: 4 pages, 4 figure
Muon Spin Relaxation Study of (La, Ca)MnO3
We report predominantly zero field muon spin relaxation measurements in a
series of Ca-doped LaMnO_3 compounds which includes the colossal
magnetoresistive manganites. Our principal result is a systematic study of the
spin-lattice relaxation rates 1/T_1 and magnetic order parameters in the series
La_{1-x}Ca_xMnO_3, x = 0.0, 0.06, 0.18, 0.33, 0.67 and 1.0. In LaMnO_3 and
CaMnO_3 we find very narrow critical regions near the Neel temperatures T_N and
temperature independent 1/T_1 values above T_N. From the 1/T_1 in LaMnO_3 we
derive an exchange integral J = 0.83 meV which is consistent with the mean
field expression for T_N. All of the doped manganites except CaMnO_3 display
anomalously slow, spatially inhomogeneous spin-lattice relaxation below their
ordering temperatures. In the ferromagnetic (FM) insulating
La_{0.82}Ca_{0.18}MnO_3 and ferromagnetic conducting La_{0.67}Ca_{0.33}MnO_3
systems we show that there exists a bi-modal distribution of \muSR rates
\lambda_f and \lambda_s associated with relatively 'fast' and 'slow' Mn
fluctuation rates, respectively. A physical picture is hypothesized for these
FM phases in which the fast Mn rates are due to overdamped spin waves
characteristic of a disordered FM, and the slower Mn relaxation rates derive
from distinct, relatively insulating regions in the sample. Finally, likely
muon sites are identified, and evidence for muon diffusion in these materials
is discussed.Comment: 21 pages, 17 figure
Exposure to p,p′-DDE: A Risk Factor for Type 2 Diabetes
BACKGROUND: Persistent organic pollutants (POPs), such as PCBs, DDT and dioxins have in several cross-sectional studies shown strong associations with type 2 diabetes mellitus. Reversed causality can however not be excluded. The aim of this case-control study was to evaluate whether POPs concentration is a risk factor for type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: A case-control study was performed within a well-defined cohort of women, age 50-59 years, from the Southern part of Sweden. Biomarkers for POP exposure, 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) were analyzed in stored serum samples, which were collected at the baseline examination when the cohort was established. For 107 out of the 371 cases, serum samples were stored at least three years before their type 2 diabetes was diagnosed. In this data set, CB-153 and p,p'-DDE were not associated with an increased risk to develop type 2 diabetes. However, when only the cases (n = 39) that were diagnosed more than six years after the baseline examination and their controls were studied, the women in the highest exposed quartile showed an increased risk to develop type 2 diabetes (OR of 1.6 [95% 0.61, 4.0] for CB-153 and 5.5 [95% CI 1.2, 25] for p,p'-DDE). CONCLUSIONS/SIGNIFICANCE: The results from the present case-control study, including a follow-up design, confirms that p,p'-DDE exposure can be a risk factor for type 2 diabetes
Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis
BACKGROUND: Exposure to arsenic concentrations in drinking water in excess of 300 μg/L is associated with diseases of the circulatory and respiratory system, several types of cancer, and diabetes; however, little is known about the health consequences of exposure to low-to-moderate levels of arsenic (10–100 μg/L). METHODS: A standardized mortality ratio (SMR) analysis was conducted in a contiguous six county study area of southeastern Michigan to investigate the relationship between moderate arsenic levels and twenty-three selected disease outcomes. Disease outcomes included several types of cancer, diseases of the circulatory and respiratory system, diabetes mellitus, and kidney and liver diseases. Arsenic data were compiled from 9251 well water samples tested by the Michigan Department of Environmental Quality from 1983 through 2002. Michigan Resident Death Files data were amassed for 1979 through 1997 and sex-specific SMR analyses were conducted with indirect adjustment for age and race; 99% confidence intervals (CI) were reported. RESULTS: The six county study area had a population-weighted mean arsenic concentration of 11.00 μg/L and a population-weighted median of 7.58 μg/L. SMR analyses were conducted for the entire six county study area, for only Genesee County (the most populous and urban county), and for the five counties besides Genesee. Concordance of results across analyses is used to interpret the findings. Elevated mortality rates were observed for both males (M) and females (F) for all diseases of the circulatory system (M SMR, 1.11; CI, 1.09–1.13; F SMR, 1.15; CI, 1.13,-1.17), cerebrovascular diseases (M SMR, 1.19; CI, 1.14–1.25; F SMR, 1.19; CI, 1.15–1.23), diabetes mellitus (M SMR, 1.28; CI, 1.18–1.37; F SMR, 1.27; CI, 1.19–1.35), and kidney diseases (M SMR, 1.28; CI, 1.15–1.42; F SMR, 1.38; CI, 1.25–1.52). CONCLUSION: This is some of the first evidence to suggest that exposure to low-to-moderate levels of arsenic in drinking water may be associated with several of the leading causes of mortality, although further epidemiologic studies are required to confirm the results suggested by this ecologic SMR analysis
- …