181 research outputs found

    Monopole and quadrupole polarization effects on the alpha-particle description of 8^{8}Be

    Full text link
    We investigate the effect of monopole and quadrupole modes on the elastic alpha-alpha resonance structure of 8^{8}Be. To this end we make a fully microscopic coupled channels calculation with three coupled channels, using the Algebraic Model. The continuum spectrum and wave functions are analyzed in terms of the individual channels to understand the nature of the resonances. It is shown that both monopole and quadrupole modes have a non-negligible effect on the resonances in the alpha-alpha continuum.Comment: 20 pages, 4 figures. submitted to Phys.Rev.

    Bis(1,3-dibenzyl­imidazolium) μ-oxido-bis­[trichloridoferrate(III)]

    Get PDF
    In the title compound (C17H17N2)2[Fe2Cl6O], obtained from the solid-state reaction of FeCl2 and N,N′-dibenzyl­imidazolium chloride, the complex anion has approximate D 3d symmetry with crystallographically imposed inversion symmetry coincident with the bridging μ-O atom. The stereochemistry about each FeCl3O centre is distorted tetra­hedral [Fe—Cl = 2.2176 (5)–2.2427 (5) Å and Fe—O = 1.7545 (2) Å]. The Cl atoms are involved in weak anion–cation C—H⋯Cl inter­actions, giving a network structure

    Observation of double radiative capture on pionic hydrogen

    Full text link
    We report the first observation of double radiative capture on pionic hydrogen. The experiment was conducted at the TRIUMF cyclotron using the RMC spectrometer, and detected γ\gamma--ray coincidences following π\pi^- stops in liquid hydrogen. We found the branching ratio for double radiative capture to be (3.05±0.27(stat.)±0.31(syst.))×105(3.05 \pm 0.27(stat.) \pm 0.31(syst.)) \times 10^{-5}. The measured branching ratio and angle-energy distributions support the theoretical prediction of a dominant contribution from the ππγγ\pi \pi \to \gamma \gamma annihilation mechanism.Comment: 4 Pages, 4 Figures. accepted for publication in Phys. Rev. Let

    Role of Chlamydia trachomatis and emerging Chlamydia-related bacteria in ectopic pregnancy in Vietnam.

    Get PDF
    In this case-control study, we investigated the seroprevalence and molecular evidence of Chlamydia trachomatis and Waddlia chondrophila in ectopic pregnancies (EP) and uneventful control pregnancies in 343 women from Vietnam. Whereas presence of C. trachomatis IgG was strongly associated with EP [adjusted odds ratio (aOR) 5·41, 95% confidence interval (CI) 2·58-11·32], its DNA remained undetected in all tubal lesions. We confirmed an independent association between antibodies against Waddlia and previous miscarriage (aOR 1·87, 95% CI 1·02-3·42). Further investigations are needed to understand the clinical significance of Waddlia's high seroprevalence (25·9% in control pregnancies) in this urban population

    Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery.

    Get PDF
    While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases

    Is authorship sufficient for today’s collaborative research? A call for contributor roles

    Get PDF
    Assigning authorship and recognizing contributions to scholarly works is challenging on many levels. Here we discuss ethical, social, and technical challenges to the concept of authorship that may impede the recognition of contributions to a scholarly work. Recent work in the field of authorship shows that shifting to a more inclusive contributorship approach may address these challenges. Recent efforts to enable better recognition of contributions to scholarship include the development of the Contributor Role Ontology (CRO), which extends the CRediT taxonomy and can be used in information systems for structuring contributions. We also introduce the Contributor Attribution Model (CAM), which provides a simple data model that relates the contributor to research objects via the role that they played, as well as the provenance of the information. Finally, requirements for the adoption of a contributorship-based approach are discussed

    Nuclear charge radius of 8^8He

    Get PDF
    The root-mean-square (rms) nuclear charge radius of ^8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of ^6He was measured to be 2.068(11) fm, in excellent agreement with a previous result. The significant reduction in charge radius from ^6He to ^8He is an indication of the change in the correlations of the excess neutrons and is consistent with the ^8He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations

    Torsion and accelerating expansion of the universe in quadratic gravitation

    Full text link
    Several exact cosmological solutions of a metric-affine theory of gravity with two torsion functions are presented. These solutions give a essentially different explanation from the one in most of previous works to the cause of the accelerating cosmological expansion and the origin of the torsion of the spacetime. These solutions can be divided into two classes. The solutions in the first class define the critical points of a dynamical system representing an asymptotically stable de Sitter spacetime. The solutions in the second class have exact analytic expressions which have never been found in the literature. The acceleration equation of the universe in general relativity is only a special case of them. These solutions indicate that even in vacuum the spacetime can be endowed with torsion, which means that the torsion of the spacetime has an intrinsic nature and a geometric origin. In these solutions the acceleration of the cosmological expansion is due to either the scalar torsion or the pseudoscalar torsion function. Neither a cosmological constant nor dark energy is needed. It is the torsion of the spacetime that causes the accelerating expansion of the universe in vacuum. All the effects of the inflation, the acceleration and the phase transformation from deceleration to acceleration can be explained by these solutions. Furthermore, the energy and pressure of the matter without spin can produce the torsion of the spacetime and make the expansion of the universe decelerate as well as accelerate.Comment: 20 pages. arXiv admin note: text overlap with gr-qc/0604006, arXiv:1110.344

    Exploring forest structural complexity by multi-scale segmentation of VHR imagery

    Get PDF
    Forests are complex ecological systems, characterised by multiple-scale structural and dynamical patterns which are not inferable from a system description that spans only a narrow window of resolution; this makes their investigation a difficult task using standard field sampling protocols. We segment a QuickBird image covering a beech forest in an initial stage of old-growthness – showing, accordingly, a good degree of structural complexity – into three segmentation levels. We apply field-based diversity indices of tree size, spacing, species assemblage to quantify structural heterogeneity amongst forest regions delineated by segmentation. The aim of the study is to evaluate, on a statistical basis, the relationships between spectrally delineated image segments and observed spatial heterogeneity in forest structure, including gaps in the outer canopy. Results show that: some 45% of the segments generated at the coarser segmentation scale (level 1) are surrounded by structurally different neighbours; level 2 segments distinguish spatial heterogeneity in forest structure in about 63% of level 1 segments; level 3 image segments detect better canopy gaps, rather than differences in the spatial pattern of the investigated structural indices. Results support also the idea of a mixture of macro and micro structural heterogeneity within the beech forest: large size populations of trees homogeneous for the examined structural indices at the coarser segmentation level, when analysed at a finer scale, are internally heterogeneous; and vice versa. Findings from this study demonstrate that multiresolution segmentation is able to delineate scale-dependent patterns of forest structural heterogeneity, even in an initial stage of old-growth structural differentiation. This tool has therefore a potential to improve the sampling design of field surveys aimed at characterizing forest structural complexity across multiple spatio-temporal scales.L'articolo è disponibile sul sito dell'editore www.sciencedirect.co

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease

    Get PDF
    \ua9 2023Background: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. Methods: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. Findings: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. Conclusions: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). Funding: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04
    corecore