1,719 research outputs found

    Future imaging atmospheric telescopes: performance of possible array configurations for gamma photons in the GeV-TeV range

    Full text link
    The future of ground based gamma ray astronomy lies in large arrays of Imaging Atmospheric Cherenkov Telescopes (IACT) with better capabilities: lower energy threshold, higher sensitivity, better resolution and background rejection. Currently, designs for the next generation of IACT arrays are being explored by various groups. We have studied possible configurations with a large number of telescopes of various sizes. Here, we present the precision of source, shower core and energy reconstruction for gamma rays in the GeV-TeV range for different altitudes of observation. These results were obtained through tools that we have developed in order to simulate any type of IACT configuration and evaluate its performance.Comment: 4 pages, 4 figures, Proceedings of the 30th ICRC, Merida, Mexico (2007

    Decreasing referrals to transient ischemic attack clinics during the COVID-19 outbreak: results from a multi-centre cross-sectional survey

    Get PDF
    Objective. The COVID-19 pandemic is having major implications for stroke care with a documented significant fall in hospital acute stroke admissions. We investigated whether COVID-19 has resulted in a decreased number of referrals to the Transient Ischemic Attack (TIA) clinics across the North West London region. Setting and Design. All the TIA clinical leads of the North West London region received an invitation by email to participate in an online survey in May 2020. The survey questionnaire aimed to assess the number of patients with suspected TIA consecutively referred to each of the TIA clinics of the North West London region between 1st March to 30th April 2020, the COVID-19 period, and between 1st March to 30th April 2019. Results. We had a response rate of 100%. During the COVID-19 period, the TIA clinics of the North West London region received 440 referrals compared to 616 referrals received between 1st March to 30th April 2019 with a fall in the number of the referrals by 28.6%. In April 2020 compared with April 2019, the number of the referrals declined by 40.1%. Conclusions. This multicentre analysis documented a significant reduction in the number of patients referred with suspected TIA to the specialised rapid access outpatient clinics in the North West London region during the COVID-19 pandemic. Future studies are needed to confirm our findings and to better characterise the incidence of cerebrovascular disease during the COVID-19 pandemic

    Observation of Multi-Directional Energy Transfer in a Hybrid Plasmonic–Excitonic Nanostructure

    Get PDF
    Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light–matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon–exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron–phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling

    Nuclear dynamics of singlet exciton fission: a direct observation in pentacene single crystals

    Get PDF
    Singlet exciton fission (SEF) is a key process in the development of efficient opto-electronic devices. An aspect that is rarely probed directly, and yet has a tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density functional theory and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the disintegration of the electronically correlated triplet pairs, and shed light on why SEF occurs on ultrafast timescales

    Fast Light-Driven Motion of Polydopamine Nanomembranes

    Get PDF
    [Image: see text] The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 ÎĽs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level

    The camera of the fifth H.E.S.S. telescope. Part I: System description

    Full text link
    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM
    • …
    corecore