28 research outputs found

    Alignment of Binocular-Binaural Data Using a Moving Audio-Visual Target

    Get PDF
    Best Paper AwardInternational audienceIn this paper we address the problem of aligning visual (V) and auditory (A) data using a sensor that is composed of a camera-pair and a microphone-pair. The original contribution of the paper is a method for AV data aligning through estimation of the 3D positions of the microphones in the visual-centred coordinate frame defined by the stereo camera-pair. We exploit the fact that these two distinct data sets are conditioned by a common set of parameters, namely the (unknown) 3D trajectory of an AV object, and derive an EM-like algorithm that alternates between the estimation of the microphone-pair position and the estimation of the AV object trajectory. The proposed algorithm has a number of built-in features: it can deal with A and V observations that are misaligned in time, it estimates the reliability of the data, it is robust to outliers in both modalities, and it has proven theoretical convergence. We report experiments with both simulated and real data

    Transferring Dense Pose to Proximal Animal Classes

    Get PDF
    Recent contributions have demonstrated that it is possible to recognize the pose of humans densely and accurately given a large dataset of poses annotated in detail. In principle, the same approach could be extended to any animal class, but the effort required for collecting new annotations for each case makes this strategy impractical, despite important applications in natural conservation, science and business. We show that, at least for proximal animal classes such as chimpanzees, it is possible to transfer the knowledge existing in dense pose recognition for humans, as well as in more general object detectors and segmenters, to the problem of dense pose recognition in other classes. We do this by (1) establishing a DensePose model for the new animal which is also geometrically aligned to humans (2) introducing a multi-head R-CNN architecture that facilitates transfer of multiple recognition tasks between classes, (3) finding which combination of known classes can be transferred most effectively to the new animal and (4) using self-calibrated uncertainty heads to generate pseudo-labels graded by quality for training a model for this class. We also introduce two benchmark datasets labelled in the manner of DensePose for the class chimpanzee and use them to evaluate our approach, showing excellent transfer learning performance.Comment: Accepted at CVPR 2020; Project page: https://asanakoy.github.io/densepose-evolutio

    Detection and Localization of 3D Audio-Visual Objects Using Unsupervised Clustering

    Get PDF
    International audienceThis paper addresses the issues of detecting and localizing objects in a scene that are both seen and heard. We explain the benefits of a human-like configuration of sensors (binaural and binocular) for gathering auditory and visual observations. It is shown that the detection and localization problem can be recast as the task of clustering the audio-visual observations into coherent groups. We propose a probabilistic generative model that captures the relations between audio and visual observations. This model maps the data into a common audio-visual 3D representation via a pair of mixture models. Inference is performed by a version of the expectationmaximization algorithm, which is formally derived, and which provides cooperative estimates of both the auditory activity and the 3D position of each object. We describe several experiments with single- and multiple-speaker detection and localization, in the presence of other audio sources

    Engagement-based Multi-party Dialog with a Humanoid Robot

    Get PDF
    When a robot is situated in an environment containing multiple possible interaction partners, it has to make decisions about when to engage specific users and how to detect and react appropriately to actions of the users that might signal the intention to interact. In this demonstration we present the integration of an engagement model in an existing dialog system based on interaction patterns. As a sample scenario, this enables the humanoid robot Nao to play a quiz game with multiple participants

    Modèles de Mélanges Conjugués pour la Modélisation de la Perception Visuelle et Auditive

    No full text
    In this thesis, the modelling of audio-visual perception with a head-like device is considered. The related problems, namely audio-visual calibration, audio-visual object detection, localization and tracking are addressed. A spatio-temporal approach to the head-like device calibration is proposed based on probabilistic multimodal trajectory matching. The formalism of conjugate mixture models is introduced along with a family of efficient optimization algorithms to perform multimodal clustering. One instance of this algorithm family, namely the conjugate expectation maximization (ConjEM) algorithm is further improved to gain attractive theoretical properties. The multimodal object detection and object number estimation methods are developed, their theoretical properties are discussed. Finally, the proposed multimodal clustering method is combined with the object detection and object number estimation strategies and known tracking techniques to perform multimodal multiobject tracking. The performance is demonstrated on simulated data and the database of realistic audio-visual scenarios (CAVA database).Dans cette thèse, nous nous intéressons à la modélisation de la perception audio-visuelle avec une tête robotique. Les problèmes associés, notamment la calibration audio-visuelle, la détection, la localisation et le suivi d'objets audio-visuels sont étudiés. Une approche spatio-temporelle de calibration d'une tête robotique est proposée, basée sur une mise en correspondance probabiliste multimodale des trajectoires. Le formalisme de modèles de mélange conjugué est introduit ainsi qu'une famille d'algorithmes d'optimisation efficaces pour effectuer le regroupement multimodal. Un cas particulier de cette famille d'algorithmes, notamment l'algorithme EM conjugue, est amélioré pour obtenir des propriétés théoriques intéressantes. Des méthodes de détection d'objets multimodaux et d'estimation du nombre d'objets sont développées et leurs propriétés théoriques sont étudiées. Enfin, la méthode de regroupement multimodal proposée est combinée avec des stratégies de détection et d'estimation du nombre d'objets ainsi qu'avec des techniques de suivi pour effectuer le suivi multimodal de plusieurs objets. La performance des méthodes est démontrée sur des données simulées et réelles issues d'une base de données de scénarios audio-visuels réalistes (base de données CAVA)
    corecore