41 research outputs found

    Liposome-based synthetic long peptide vaccines for cancer immunotherapy

    Get PDF
      Synthetic long peptides (SLP) derived from cancer-associated antigens hold great promise as well-defined antigens for cancer immunotherapy. Clinical studies showed that SLP vaccines have functional potency when applied to pre-malignant stage patients, but need to be improved for use as a therapeutic intervention against tumours. So far, SLPs have been administered in Montanide ISA-51, a water-in-oil formulation with reported important drawbacks and induced local side effects. Therefore, there is an urgent need for replacement of Montanide by more potent and safe alternatives. In this thesis, the concept of cationic liposome-based formulations was introduced, as the backbone for improved delivery of SLPs for cancer therapeutic vaccination. The developed formulation’s ability to induce efficient immune responses able to control tumour outgrowth in aggressive independent tumour models, makes cationic liposomes a very promising platform for SLP-based cancer immunotherapy. Their flexibility regarding the properties of loaded SLPs, their relative inexpensive production and the possibility to administer them via different delivery routes are all in favour for liposomal SLP-based cancer immunotherapy to become reality soon.  Drug Delivery Technolog

    Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis

    Get PDF
    We evaluated the potential of a liposomal antigen delivery system (ADS) containing Candida albicans cell wall surface proteins (CWSP) in mediating protection against systemic candidiasis. Treatment of bonemarrow- derived dendritic cells with CWSP-loaded dioctadecyldimethylammonium bromide:monoolein (DODAB:MO) liposomes enhanced and prolonged their activation comparatively to free antigen, indicating that liposome-entrapped CWSP were released more sustainable. Therefore, we immunized mice with CWSP either in a free form or loaded into two different DODAB:MO liposome formulations, respectively designated as ADS1 and ADS2, prior to intravenous C. albicans infection. Immunization with ADS1, but not with ADS2, conferred significant protection to infected mice, comparatively to immunization with CWSP or empty liposomes as control. ADS1-immunized mice presented significantly higher serum levels of C. albicans-specific antibodies that enhanced phagocytosis of this fungus. In these mice, a mixed cytokine production profile was observed encompassing IFN-c, IL-4, IL-17A and IL-10. Nevertheless, only production of IL-4, IL-17 and IL-10 was higher than in controls. In this study we demonstrated that DODAB:MO liposomes enhance the immunogenicity of C. albicans antigens and host protection in a murine model of systemic candidiasis. Therefore, this liposomal adjuvant could be a promising candidate to assess in vaccination against this pathogenic fungus.This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI). Catarina Carneiro holds scholarship SFRH/BD/69068/2010. We acknowledge NanoDelivery-I&D em Bionanotecnologia, Lda for access to their equipment

    Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach.

    Get PDF
    In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were determined for each formulation. Moreover, the adjuvanticity of the liposomes was assessed in an in vitro dendritic cell (DC) model, by quantifying the expression of DC maturation markers CD40, CD80, CD83 and CD86. The acquired data of these liposome characteristics were successfully fitted with regression models, and response contour plots were generated for each response factor. These models were applied to predict a lipid composition that resulted in a liposome with a target zeta potential. Subsequently, the expression of the DC maturation factors for this lipid composition was predicted and tested in vitro; the acquired maturation responses corresponded well with the predicted ones. These results show that a DoE approach can be used to screen various lipids and lipid compositions, and to predict their impact on liposome size, charge and adjuvanticity. Using such an approach may accelerate the formulation development of liposomal vaccine adjuvants.Drug Delivery Technolog

    Liposome-based synthetic long peptide vaccines for cancer immunotherapy

    Get PDF
      Synthetic long peptides (SLP) derived from cancer-associated antigens hold great promise as well-defined antigens for cancer immunotherapy. Clinical studies showed that SLP vaccines have functional potency when applied to pre-malignant stage patients, but need to be improved for use as a therapeutic intervention against tumours. So far, SLPs have been administered in Montanide ISA-51, a water-in-oil formulation with reported important drawbacks and induced local side effects. Therefore, there is an urgent need for replacement of Montanide by more potent and safe alternatives. In this thesis, the concept of cationic liposome-based formulations was introduced, as the backbone for improved delivery of SLPs for cancer therapeutic vaccination. The developed formulation’s ability to induce efficient immune responses able to control tumour outgrowth in aggressive independent tumour models, makes cationic liposomes a very promising platform for SLP-based cancer immunotherapy. Their flexibility regarding the properties of loaded SLPs, their relative inexpensive production and the possibility to administer them via different delivery routes are all in favour for liposomal SLP-based cancer immunotherapy to become reality soon.  </div

    Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles.

    No full text
    Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer

    Combined Photosensitization and Vaccination Enable CD8 T-Cell Immunity and Tumor Suppression Independent of CD4 T-Cell Help

    Get PDF
    Cytotoxic T lymphocytes (CTLs) are key players in fighting cancer, and their induction is a major focus in the design of therapeutic vaccines. Yet, therapeutic vaccine efficacy is limited, in part due to the suboptimal vaccine processing by antigen-presenting cells (APCs). Such processing typically takes place via the MHC class II pathway for CD4 T-cell activation and MHC class I pathway for activation of CD8 CTLs. We show that a combination of skin photochemical treatment and immunization, so-called photochemical internalization (PCI) facilitated CTL activation due to the photochemical adjuvant effect induced by photosensitizer, oxygen, and light. Mice were immunized intradermally with antigen and photosensitizer, followed by controlled light exposure. PCI-treated mice showed strong activation of CD8 T cells, with improved IFN-γ production and cytotoxicity, as compared to mice immunized without parallel PCI treatment. Surprisingly, the CD8 T-cell effector functions were not impaired in MHC class II- or CD4 T-cell-deficient mice. Moreover, PCI-based vaccination caused tumor regression independent of MHC class II or CD4 T cells presence in melanoma bearing mice. Together, the data demonstrate that PCI can act as a powerful adjuvant in cancer vaccines, even in hosts with impaired T-helper functions
    corecore