92 research outputs found

    The War That Congress Waged

    Get PDF

    Smart sensing-enabled decision support system for water scheduling in orange orchard

    Get PDF
    The scarcity of water resources throughout the world demands its optimum utilization in various sectors. Smart Sensing-enabled irrigation management systems are the ideal solutions to ensure the optimum utilization of water resources in the agriculture sector. This paper presents a wireless sensor network-enabled Decision Support System (DSS) for developing a need-based irrigation schedule for the orange orchard. For efficient monitoring of various in-field parameters, our proposed approach uses the latest smart sensing technology such as soil moisture, leaf-wetness, temperature and humidity. The proposed smart sensing-enabled test-bed was deployed in the orange orchard of our institute for approximately one year and successfully adjusted its irrigation schedule according to the needs and demands of the plants. Moreover, a modified Longest Common SubSequence (LCSS) mechanism is integrated with the proposed DSS for distinguishing multi-valued noise from the abrupt changing scenarios. To resolve the concurrent communication problem of two or more wasp-mote sensor boards with a common receiver, an enhanced RTS/CTS handshake mechanism is presented. Our proposed DSS compares the most recently refined data with pre-defined threshold values for efficient water management in the orchard. Irrigation activity is scheduled if water deficit criterion is met and the farmer is informed accordingly. Both the experimental and simulation results show that the proposed scheme performs better in comparison to the existing schemes. © 2001-2012 IEEE

    An adaptive and flexible brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients

    Get PDF
    The paralyzed population is increasing worldwide due to stroke, spinal code injury, post-polio, and other related diseases. Different assistive technologies are used to improve the physical and mental health of the affected patients. Exoskeletons have emerged as one of the most promising technology to provide movement and rehabilitation for the paralyzed. But exoskeletons are limited by the constraints of weight, flexibility, and adaptability. To resolve these issues, we propose an adaptive and flexible Brain Energized Full Body Exoskeleton (BFBE) for assisting the paralyzed people. This paper describes the design, control, and testing of BFBE with 15 degrees of freedom (DoF) for assisting the users in their daily activities. The flexibility is incorporated into the system by a modular design approach. The brain signals captured by the Electroencephalogram (EEG) sensors are used for controlling the movements of BFBE. The processing happens at the edge, reducing delay in decision making and the system is further integrated with an IoT module that helps to send an alert message to multiple caregivers in case of an emergency. The potential energy harvesting is used in the system to solve the power issues related to the exoskeleton. The stability in the gait cycle is ensured by using adaptive sensory feedback. The system validation is done by using six natural movements on ten different paralyzed persons. The system recognizes human intensions with an accuracy of 85%. The result shows that BFBE can be an efficient method for providing assistance and rehabilitation for paralyzed patients. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record*

    Prevalence of metabolic syndrome in patients with premature coronary artery disease proven by coronary angiogram

    Get PDF
    Background: Metabolic syndrome (MS) is associated with premature coronary artery disease (CAD). The aim of this study was to evaluate the prevalence of MS and its association with severity of CAD proven by coronary angiogram (CAG) in young patients.Methods: We included patients, aged 45 years or less, admitted with acute coronary syndrome (ACS), who had CAD confirmed by coronary angiography. They were divided into two groups according to the presence or absence of MS based on International Diabetes Federation (IDF) criteria. CAD was classified into single, double and triple vessel disease (TVD). The prevalence of MS and its individual parameters was calculated.Results: Among 90 young patients who presented with ACS, MS was present in 67 patients (74.44%). Among those with MS, the prevalence of each individual criterion was statistically significant in MS group (P <0.05). Prevalence of pre-existing hypertension and diabetes was significantly higher in MS group (p <0.01). Smoking, alcohol consumption and family history of CAD were not statistically significant in patients with and without MS. Fifteen out of 90 patients (14 in MS group) who presented with ACS had TVD in CAG, but this was not statistically significant (p 0.06).Conclusions: This study confirms a very high prevalence of MS in young Indian patients with premature CAD. MS was more prevalent than the conventional risk factor smoking in young CAD patients. We could not find significant difference in severity of CAD based on CAG between MS and non-MS group

    Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks

    Get PDF
    Abstract Non-Orthogonal Multiplex Access (NOMA) can be deployed in Unmanned Aerial Vehicle (UAV) networks to improve spectrum efficiency. Due to the broadcasting feature of NOMA-UAV networks, it is essential to focus on the security of the wireless system. This paper focuses on maximizing the secrecy sum-rate under the constraint of the achievable rate of the legitimate channels. To tackle the non-convexity optimization problem, a reinforcement learning-based alternative optimization algorithm is proposed. Firstly, with the help of successive convex approximations, the optimal power allocation scheme with a given UAV trajectory is obtained by using convex optimization tools. Afterwards, through plenty of explorations on the wireless environment, the Q-learning networks approach the optimal location transition strategy of the UAV, even without the wireless channel state information

    Optimum range of angle tracking radars: a theoretical computing

    Get PDF
    In this paper, we determine an optimal range for angle tracking radars (ATRs) based on evaluating the standard deviation of all kinds of errors in a tracking system. In the past, this optimal range has often been computed by the simulation of the total error components; however, we are going to introduce a closed form for this computation which allows us to obtain the optimal range directly. Thus, for this purpose, we firstly solve an optimization problem to achieve the closed form of the optimal range (Ropt.) and then, we compute it by doing a simple simulation. The results show that both theoretical and simulation-based computations are similar to each other

    A low-complexity equalizer for video broadcasting in cyber-physical social systems through handheld mobile devices

    Get PDF
    In Digital Video Broadcasting-Handheld (DVB-H) devices for cyber-physical social systems, the Discrete Fractional Fourier Transform-Orthogonal Chirp Division Multiplexing (DFrFT-OCDM) has been suggested to enhance the performance over Orthogonal Frequency Division Multiplexing (OFDM) systems under time and frequency-selective fading channels. In this case, the need for equalizers like the Minimum Mean Square Error (MMSE) and Zero-Forcing (ZF) arises, though it is excessively complex due to the need for a matrix inversion, especially for DVB-H extensive symbol lengths. In this work, a low complexity equalizer, Least-Squares Minimal Residual (LSMR) algorithm, is used to solve the matrix inversion iteratively. The paper proposes the LSMR algorithm for linear and nonlinear equalizers with the simulation results, which indicate that the proposed equalizer has significant performance and reduced complexity over the classical MMSE equalizer and other low complexity equalizers, in time and frequency-selective fading channels. © 2013 IEEE
    corecore