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Abstract

Non-Orthogonal Multiplex Access (NOMA) can be deployed in Unmanned Aerial Vehicle (UAV) networks to im-
prove the spectrum efficiency. Due to the broadcasting feature of NOMA-UAV networks, it is essential to focus on
the security of the wireless system. This paper focuses on maximizing the secrecy sum-rate under the constraint of
the achievable rate of the legitimate channels. To tackle the non-convexity optimization problem, a reinforcement
learning-based alternative optimization algorithm is proposed. Firstly, with the help of successive convex approxi-
mation, the optimal power allocation scheme with a given UAV trajectory is obtained by using convex optimization
tools. Afterwards, through plenty of explorations on the wireless environment, the Q-learning networks approach the
optimal location transition strategy of the UAV, even without the wireless channel state information.

Keywords:
Unmanned aerial vehicle (UAV); NOMA; reinforcement learning; secure communications; deep Q-learning.

1. Introduction

In the past decades, the throughput of wireless big
data increases exponentially [1–3], especially when the
Internet of Things (IoT) is widely adopted. Numbers
of emerging wireless technologies are proposed to en-
hance the quality of service both in academic and in-
dustry [4–7]. Unmanned Aerial Vehicles (UAV), due to
their economical and quick deployment, has been con-
sidered as an important research area for the next gener-
ation of wireless IoT networks. Thanks to the mobility,
the UAV base station can hover in the air or fly to an
arbitrary location to enlarge the wireless coverage area,
which can help to accommodate massive connections.

Meanwhile, Non-Orthogonal Multiplex Access
(NOMA), which can transmit multiple data streams

∗*The corresponding authors are Xingwang Li (lixing-
wang@hpu.edu.cn) and Md. Jalil Piran. (piran@sejong.ac.kr).

simultaneously to different users, can be employed
in UAV networks to improve the spectrum efficiency
[8–11]. By using successive interference cancellation
with suitable decoding order, NOMA outperforms
classical Orthogonal Multiple Access (OMA) in terms
of the achievable sum data rate of both downlink and
uplink [12, 13]. In addition, the optimal user pairing
scheme is studied in [14], where the user with the worst
channel gain pairs with the one with the best gain.
Through carefully design of the trajectory and power
control [15], as well as the precoding scheme [16], the
NOMA-assisted UAV networks can greatly improve
its sum rate. As an extended work, the authors in [17]
investigated the power allocation optimization with
circular trajectory for NOMA-UAV networks under
secure constrains.

On the other hand, machine learning (ML) has
aroused great interest in the optimization of wireless
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networks in recent years [18]. Due to the model-
free feature, Reinforcement Learning (RL) is capable
of tackling the optimization problems for NOMA-UAV
networks [19], where it is difficult to obtain plenty of
training data. Specifically, Q-learning networks, which
are modeled as a Markov Decision Process (MDP), have
been widely used in reinforcement learning algorithms.
Generally, Q-learning networks consist of a set of states,
a set of actions, the reward function as well as the
Q-table [20]. In each exploration of Q-learning, the
Q-table is updated according to the Bellman equation,
where the Q-table depends on the current state, the next
action, as well as the reward. Through plenty of explo-
rations or exploitations of the current Q-table, the op-
timal state transition function can be obtained. For ex-
ample, a RL-based approach is proposed in [21] to opti-
mize the trajectory of the UAV base station, and simula-
tion results show that this algorithm can achieve 3 times
of average user throughput gain. Focusing on the up-
link sum rate of UAV networks, the RL method is used
in [22] to track the group mobile users with acceptable
performance loss. By using a stochastic game, authors
in [23, 24] extended single UAV to multiple UAV sce-
narios, where a multi-agent RL method is introduced to
the joint optimization problem on user, power allocation
and sub-channel selection scheme.

Due to the broadcasting feature of NOMA-UAV net-
works, it is essential to focus on the security of the wire-
less system. To this end, the aim of this paper is to
maximize the secrecy sum-rate under the constraint of
the achievable rate of the legitimate channels. Due to
the non-convexity of the objective function, it is hard to
solve the optimization problem directly. To tackle the
issue, a reinforcement learning-based alternative opti-
mization algorithm is proposed. Firstly, with the help
of successive convex approximation, the optimal power
allocation scheme with a given UAV trajectory is ob-
tained by using convex optimization tools. Afterwards,
through plenty of explorations on the wireless environ-
ment, the Q-learning networks approach the optimal lo-
cation transition strategy of the UAV, even without the
wireless channel state information. Simulation results
are provided to verify the converge and the effectiveness
of the proposed algorithm.

The main contributions of this paper can be summa-
rized as follows:

• A deep RL-based optimization algorithm is pro-
posed to maximize the secrecy sum-rate under the
constraint of the achievable rate of the legitimate
channels, where the trajectory and the power al-
location scheme for UAV-NOMA are jointly opti-

mized through the two-stage Q-learning networks.

• We provide deep insight into the effects of the sys-
tem parameters, such as the predefined rate for the
legitimate channels, the altitude of the UAV as well
as the transmission power, on the secrecy sum rate
through simulation results.

UAV

K Users

Eavesdropper

Figure 1: System model of joint UAV trajectory and power allocation
optimization for secure IoT networks.

2. System model

As depicted in Fig.1, there is one UAV node, K as-
sociated users, as well as a passive eavesdropper. All
nodes are assumed to be equipped with a single antenna,
and all links experience Line-of-Sight (LoS) propaga-
tion. Specifically, the locations of users are denoted as
Li = [xi, yi]T , i ∈ [1,K], while the eavesdropper’s loca-
tion is Le. Moreover, the UAV flies with fixed altitude
H, and the horizontal trajectory of the UAV at the n-th
time slot is defined as W = {w[n] = [x[n], y[n]]T , n =

1, 2, ...,N.}. The period from the first location to the last
location is denoted as T , and the time interval between
adjacent locations is given as δ = T/N.

The channel power gain from the UAV to the i-th user
can be given as

gi[n] = ρod−αi [n]

= ρo(H2 + ||w[n] − Li||
2)−α/2,∀i ∈ Ω, n ∈ [1,N],

(1)

where ρo is the reference power gain at the distance di =

1m, and α ≥ 2.
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Note that the Doppler effect is negligible when the
moving velocity of the UAV is small enough. Thus, in
this case, the wireless channels from the UAV to the
users is dominated by the LOS component. Therefore,
LOS model is mostly adopted in the current research
literature on UAV [14, 15, 17, 25]. Furthermore, our re-
search results can be easily extended to NLOS or com-
posite propagation models [26].

Similarly, the channel power gain from the UAV to
the eavesdropper at the n-th time slot can be given as

ge[n] = ρod−αe [n]

= ρo(H2 + ||w[n] − Le[n]||2)−α/2,∀n ∈ [1,N].
(2)

Since NOMA protocol is adopted at the UAV, the
downlink transmission signal is a linear superposition
of K data streams with different power allocation fac-
tors. Consequently, the downlink NOMA signal can be
expressed as can be expressed as

x =

K∑
i=1

√
ξiPxi, (3)

where P is the transmission power of the UAV, xi is the
original message transmitted from the UAV to the i-th
user, and ξi is the power allocation factor for xi.

In addition, we use ξ[n] to denote the power
allocation scheme for n-th location, i.e., ξ[n] =

[ξ1[n], ξ2[n], ..., ξK[n]]T . We use Ξ to denote the power
allocation scheme for all locations, i.e., Ξ = {ξ[n], n ∈
[1,N]}.

Considering the total power constrain, we have the
following equation∑

i∈Ω

ξi[n] = 1,∀n ∈ [1,N]. (4)

Thus, the received signal at the user can be given as

yi =
√

gix + ni =
√

gi

∑
i∈Ω

√
ξiPxi + ni, (5)

where ni ∼ CN(0, σ2) is the additive white Gauss noise.
Without loss of generality, it is assumed that the chan-

nel power gains are in an ascending order with respect
to the index, i.e., g1 ≤ g1 ≤ ... ≤ gK . According
the NOMA protocol, the power allocation factors are
in a descending order with respect to the index, i.e.,
ξ1 ≥ ξ2 ≥ ... ≥ ξK .

3. Problem formulation

According to the NOMA protocol, the perfect Suc-
cessive Interference Cancellation (SIC) receiver is

adopted at all users based on the power allocation fac-
tors. That is, the k-th user decodes the first k − 1 data
streams with larger power before decoding its own mes-
sage, while the residual data streams with smaller power
will be treated as interference. In addition, the SNR of
k-th data stream at the i-th user at the n-th time slot can
be given as

γi,k[n] =
ξk[n]

Ik[n] + σ2

giP

=
ξk[n]

Ik[n] + σ2

ρoP (H2 + ||w[n] − Li||
2)α/2

,

(6)

with

Ik[n] =

K∑
j=k+1

ξ j[n],∀n ∈ [1,N]. (7)

Then, the achievable transmission rate of k-th data
stream at the k-th user at the n-th time slot can be given
as

Rk,k[n] = log2(1 + γk,k[n]),∀k ∈ [1,K], n ∈ [1,N]. (8)

On the other hand, it is assumed that the eavesdropper
has no prior information on the decoding order, and all
other data streams are treated as interference. The corre-
sponding SINR of k-th data stream at the eavesdropper
at the n-th time slot can be given as

γe
k[n] =

ξk[n]

Ie
k [n] + σ2

geP

=
ξk[n]

Ie
k [n] + σ2

ρoP (H2 + ||w[n] − Le[n]||2)α/2
,

(9)

with

Ie
k [n] =

∑
j,k

ξ j[n],∀n ∈ [1,N]. (10)

Then the achievable rate of the k-th data stream at the
eavesdropper can be calculated as

Re
k[n] = log2(1 + γe

k[n]),∀k ∈ [1,K], n ∈ [1,N]. (11)

Thus, according to the secure communication model,
the secrecy rate of the k-th user at the n-th time slot is
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given as

rk[n] = (Rk,k[n] − Re
k[n])+

=
[

log2
(1 + γk,k[n])
(1 + γe

k[n])

]+
=
[

log2

1 +
ξk[n]

Ik[n]+ σ2
gk [n]P

1 +
ξk[n]

Ie
k [n]+ σ2

ge [n]P

]+
=
[

log2(1 +
ξk[n]

Ik[n] + ck[n]
) + log2(Ie

k [n] + q[n])

− log2 (1 + q[n])
]+
,

(12)

with

ck[n] =
σ2

gk[n]P
, q[n] =

σ2

ge[n]P
(13)

The goal of this paper is to maximize the toal secrecy
rate of all users by jointly optimizing power allocation
scheme and UAV trajectory, with a predefined threshold
rate Rth

j for the all users, i.e.,

Rk,k[n] ≥ Rth
k ,∀k ∈ [1,K], n ∈ [1,N]. (14)

The optimization problem can be formulated as

(P0) : max
W,Ξ,I

1
N

N∑
n=1

K∑
k=1

rk[n] (15)

s.t. 0 ≤ ξi[n] ≤ 1,∀n ∈ [1,N], (16)∑
i∈Ω

ξi[n] = 1,∀n ∈ [1,N], (17)

||w[n] − w[n + 1]||2 ≤ (vmδ)2,∀n ∈ [1,N − 1],
(18)

Rk,k[n] ≥ Rth
k ,∀k ∈ [1,K], n ∈ [1,N]. (19)

where vm is the maximum horizontal velocity of the
UAV.

4. Optimization of power allocation factors

Since it is difficult to solve the problem in (15) di-
rectly, a two-stage joint trajectory and power allocation
alternating optimization algorithm are adopted in this
paper.

Firstly, with a given trajectory w[n] at n-th time
slot, the optimal power allocation factors ξ[n] is ob-
tained through successive convex optimization tech-
nique. Consequently, the UAV trajectory optimization
problem is solved by deep reinforcement learning-based
iterative algorithm. With the help of deep Q-learning

networks, the UAV can learn the environment of the sum
secrecy rate, and move to the best location.

With a given UAV trajectory w[n] at n-th time slot,
the optimization problem of sum-rate of rk[n] with re-
spect to ξ[n] can be reformulated as

(P1) : max
ξ[n],I[n]

K∑
k=1

r′k[n], (20)

s.t. (14), (16), (17).

where

r′k[n] = log2(1 +
ξk[n]

Ik[n] + ck[n]
)

+ log2(Ie
k [n] + q[n]) − log2 (1 + q[n])

(21)

We turn to consider the rate constraint in (14), which
can be rewritten as

γk,k[n] ≥ γth
k ,∀k ∈ [1,K] (22)

where γth
k = 2Rth

k − 1.
By substituting (6) into (22), we have

ξk[n] ≥ γth
k (Ik[n] + ck[n]),∀k ∈ [1,K]. (23)

Considering the objective function in (20), it is easy
to prove that r′k[n] is concave with respect to ξk[n] and
Ie
k [n], convex with respect to Ik[n]. Thus, the objec-

tive function in (20) is non-convex and intractable to
be solved. To tackle the problem in (20), the successive
convex optimization technique is used to give a tight ap-
proximation solution. The main idea of successive con-
vex optimization is to convert the non-convex function
to a linear function by using first-order Taylor expansion
at the prior feasible solution.

To perform the successive convex optimization, a set
of auxiliary variables ηk[n] is introduced to reformulate
(20) as

(P2) : max
ξ[n],I[n],η[n]

K∑
k=1

r̂k[n], (24)

s.t. Ik[n] + ck[n] ≤ ηk[n],∀k ∈ [1,K], (25)
(23), (16), (17).

where

r̂k[n] = log2(Ik[n] + ck[n] + ξk[n])
+ log2(Ie

k [n] + q[n])
− log2 ηk[n] − log2 (1 + q[n])

(26)
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Since the objective function in (24) is convex with
respect to ηk[n], the following lower-bound can be ob-
tained given r-th iteration results ηr

k[n].

r̂k[n] ≥ log2(Ik[n] + ck[n] + ξk[n]) + log2(Ie
k [n] + q[n])

− log2 (1 + q[n]) − log2 η
r
k[n]

−
1

ln2 ∗ ηr
k[n]

(ηk[n] − ηr
k[n])

= rlb
k [n].

(27)

Thus, the optimization problem in (24) can be refor-
mulated as

(P3) : max
ξ[n],I[n],η[n]

K∑
k=1

rlb
k [n] (28)

s.t. (25), (23), (16), (17).

We can observe that the objective function in (28) is
concave with respect to ξk[n], Ik[n] and Ie

k [n], and affine
with respect to ηk[n]. Also, all the constraints of (P3)
are affine. Thus, the optimization problem in (P3) is
convex and can be efficiently solved by classical convex
optimization tools, such as CVX [27, 28].

The details of the iteration optimization algorithm for
(P3) is given as in Algorithm 1.

Algorithm 1 Iteration optimization algorithm for (P3)

1: Initialize ξr[n], Ir[n], Ie,r[n], ηr[n], and set iteration
index r = 0.

2: repeat
3: With ηr[n], use CVX to solve prob-

lem (P3) and obtain the optimal solution
ξr+1[n], Ir+1[n], Ie,r+1[n], ηr+1[n].

4: Update iteration index: r = r + 1.
5: until r reaches the maximum iteration number, or

the increase of the objective function in (P3) is
smaller than the predefined threshold τ.

5. Q-learning algorithm on UAV movement

In this section, given power allocation factors ξ[n]
at the n-th time slot, our objective is to obtain the best
movement to maximize the sum secrecy rate for the next
UAV location. Since the optimization problem is hard
to be dealt with, an effective algorithm is required to
solve the horizontal trajectory optimization. As the sum
secrecy rate is related to the distance between the UAV

to all user, as well as the distance between the UAV to
the eavesdropper, the RL-based algorithm is proposed
to solve the optimization problem.

Q-learning algorithm is a powerful model-free rein-
forcement learning method, which is widely used for
resource allocation and channel estimation in wireless
communication networks. The main advantage of Q-
learning algorithm is that it is not necessary to obtain the
channel state information or the state transition proba-
bility. To this end, deep Q-learning network is adopted
in this paper to assist the learning of the environment of
secure NOMA communications.

In our Q-learning model, the UAV acts as an intelli-
gent agent, and the Q-learning model consists of four
elements, i.e., the state space S , the action space A, the
reward function Ra as well as the Q-table Q. In each
step of the Q-learning network, the agent explores the
environment from the initial state, calculates the reward
of the selected action, and updates the Q-table step by
step.

In order to simplify the problem, without loss of gen-
erality, it is assumed that actions for each step are the
finite set of coordinates, which are used to denote 5 di-
rections of UAV nodes, i.e., A = {0, 1, 2, 3, 4}. We use
λ = vmδ to denote the length of each movement. Specif-
ically, a = 0 indicates that the UAV holds statically, and
a = 1, 2, 3, 4 means the UAV moves forward, backward,
left turn and right turn with length λ, respectively. Note
that any number of directions can be used in our pro-
posed algorithm, while The number of directions are a
tradeoff between the computational complexity and the
approximation accuracy. That is, the larger number of
directions leads to higher complexity and higher accu-
racy.

Afterwards, all user are randomly distributed within a
square area with the size Mλ×Mλ. And the coordinates
of the UAV measured based on λ are used as the states
of the agent, i.e.,

S = {sn = [x[n], y[n]]T , n ∈ [1,N]} (29)

with

x[n] ∈ [0,M − 1], y[n] ∈ [0,M − 1]. (30)

Moreover, we set the initial state as coordinate origin,
i.e., s[1] = [0, 0]T .

The reward function Ra is dependent on the current
state s as well as the selected action a. According to the
optimization problem in (15), Ra can be modeled as

Ra =

K∑
k=1

rk[n]. (31)
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Qn+1(sn, an) = (1 − θ)Qn(sn, an)

+ θ
[
Rn + βmax

a∈A
Qn(sn+1, a)

]
,

(32)

where θ ∈ (0, 1] denotes the learning rate that is also the
weight of the current reward. The larger the θ, the faster
learning speed. β ∈ [0, 1] represents the discount factor,
which indicates the importance of the future earnings,
i.e., the larger the β, the greater the forward returns.

In each step, ε-greedy policy is adopted for the UAV
to select an action, which is also a tradeoff between the
exploration of environment and the exploitation of the
current Q-table. Specifically, according to the ε-greedy
policy, the UAV exploits the optimal action based on
the current Q-table with probability ε, and explores the
other actions by randomly selecting an action with prob-
ability (1 − ε). Generally, ε may be large enough to
guarantee that the current optimal action is hit with high
probability.

The details of the deep Q-learning algorithm for (15)
is given as in Algorithm 2.

Algorithm 2 Deep Q-learning Algorithm for (P0)

1: Initialize ξ, s, initialize Q(s, a) with arbitrary value,
and set iteration index n = 1.

2: repeat
3: For each step of iterations
4: Employ ε-greedy policy to select action an, up-

dated state sn+1.
5: Given UAV location sn+1, calculate the optimal

power allocation factors ξ[n+1] as in Algorithm
1 .

6: Observe the reward Ra according to (31).
7: Update Q-table as in (32).
8: Update iteration index: n = n + 1.
9: until n reaches the maximum iteration number N.

6. Simulation results

In this section, simulation results are provided to val-
idate the converge and the effectiveness of the proposed
algorithm. In all simulations, unless otherwise speci-
fied, we set the UAV’s altitude as H = 20m, the max-
imum horizontal velocity of the UAV as vm = 10m/s,
and the interval of each time slot is set as δ = 0.2s. The
square area of the UAV’s trajectory is a 100 × 100m,
and the action space is a set with five different direc-
tions, i.e., A = {0, 1, 2, 3, 4}. The number of users is
set as K = 9, and the locations of K users are given as

Lk = [2k, 2k]′,∀k ∈ [1,K]. The initial location of the
UAV is given as [90, 0]′m, while that of the Eavesdrop-
per is [100, 100]′m.

In Algorithm 1, the predefined increase threshold is
set as τ = 0.001, and the maximum iteration number is
30. As to Algorithm 2, the key parameters are given as
ε = 0.95 and θ = 1, β = 0.4, while the number of time
slots is set as N = 10000. The transmission power of the
UAV is P = 30dBm, the reference power gain is set as
ρ0 = −30dB, the noise power is given as σ2 = −74dBm.
While the path loss exponent is α = 2, and the threshold
rate is Rth

k = 0.5bps/Hz,∀k ∈ [1,K].
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Figure 2: The converge of Algorithm 1 with respect to the iteration
number r.
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Figure 3: The trajectory of the UAV in Algorithm 2 .

Firstly, the converge of Algorithm 1 is presented in
Fig.2, where there are K = 9 legitimate users in total,
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Figure 4: The reward of Algorithm 2 with respect to the iteration
number.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration index

10

10.5

11

11.5

12

12.5

13

13.5

M
ea

n 
R

ew
ar

d

Rth=0.5bps/Hz

Rth=1.0 bps/Hz

Figure 5: The mean reward of Algorithm 2 with respect to the itera-
tion number.

and the eavesdropper is located as [100, 100]′m. We can
observe that, when the iteration number reaches 30, the
secrecy sum rate begins to converge, which validates
the effectiveness of the proposed algorithm. Thus, in
the following simulations, we set the maximum itera-
tion number of Algorithm 1 as 30.

As to the trajectory optimization in Algorithm 2, an
example is presented in Fig.3. We can see from this fig-
ure that the UAV flies to the best location with the help
of deep Q-learning networks. Specifically, when the it-
eration number reaches 5000, the locations of the UAV
remain stable near the origin. The reason is that, with
the positions around the origin, the UAV is the farthest
from the eavesdropping node and the closest to the le-

0 1000 2000 3000 4000 5000 6000 7000
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14
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R
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d

Rth=0.5bps/Hz
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Figure 6: The reward function curves with respect to the altitude of
UAV.

gitimate users. Thus, it is the optimal position for the
secure UAV-NOMA networks.

On the other hand, the reward for each step is shown
in Fig.4, where in the first 1800 explorations the rewards
increase sharply, while become stationary in the follow-
ing phase. When the iteration number is larger than
4000, the reward of the UAV-NOMA becomes converge
to 13.8 bps/Hz. To give an insight into the effects of
the predefined threshold rate constrains for the legiti-
mate channels Rth on the system performance, we com-
pare the rewards curve with Rth = 1.0bps/Hz with that
of Rth = 0.5bps/Hz in Fig.4. It is observed that, the
larger the rate constraints are, the slower the converg-
ing speed of the reward is. The reason is that, when
the rate constraints are stronger, it is more difficult for
the UAV to obtain the optimal power allocation scheme
for the NOMA protocol. As such, the growth rate of
the reward is slowing down. Moreover, the mean re-
ward with respect to iteration number is given in Fig.5,
with Rth = 1.0bps/Hz and Rth = 0.5bps/Hz, respec-
tively. We can see from this figure, with weak rate con-
straints for the legitimate channels, larger secrecy sum
rate can be obtained. Specifically, about 0.2bps/Hz gain
can be obtained when the rate constraints change from
Rth = 1.0bps/Hz to Rth = 0.5bps/Hz. All results val-
idate the convergence and the effectiveness of the pro-
posed two-stage algorithm.

The effects of the UAV’s altitude H are depicted in
Fig.6 and Fig.7. We can see from Fig.6 that, the re-
ward of UAV-NOMA is sensitive with respect to H.
When H changes from 20m to 10m, the stationary re-
ward changes from 13.8 bps/Hz to 15.7 bps/Hz. The
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Figure 7: The mean reward function curves with respect to the altitude
of UAV.

reason for the system performance gain is that, when the
UAV’s altitude H becomes lower, the wireless channels
of the legitimate users become stronger. Thus, the se-
crecy sum rate can be improved. Similar results can be
observed in Fig.7, where the mean reward is compared
with different H.

Also, the effects of the path loss exponent α on the
system performance are presented in Fig.8 and Fig.9,
where the UAV’s altitude H is set as H = 10m, and the
path loss exponent α is set as α = 2.0 and α = 2.5, re-
spectively. One can see from Fig.8 that the stationary
reward values of the system changes from 15.7 to 13.8
bps/Hz, when α changes from 2.0 to 2.5. The reason
is that when the path loss exponent α grows larger, both
the capacity of the legitimate channels and the eaves-
dropping channel decrease sharply. As such, the se-
crecy rate sum becomes smaller. Also, we can find
that there exists a performance degradation when the
iteration number reaches 3000. The reason is that we
adopt the ε-greedy policy to select the optimal action
in each iteration. Specifically, ε = 0.95. According to
the ε-greedy policy, the UAV exploits the optimal action
based on the current Q-table with probability ε, and ex-
plores other actions by randomly selecting an action a
probability of 0.05. Generally, ε may be large enough
to guarantee that the current optimal action is hit with
high probability. Thus, there exists the probability of
0.05 that a random action is selected. Then, there will
be a performance degradation. However, when the it-
eration number reaches large enough, the performance
will converge to the optimal value. Similar results can
be observed in Fig.9, where the mean reward value is
considered.
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Figure 8: The reward function curves with respect to the path loss
exponent α.

7. Conclusion

NOMA can be deployed in UAV networks to improve
the spectrum efficiency. Due to the broadcasting feature
of NOMA-UAV networks, it is essential to focus on the
security of the wireless system. This paper focuses on
maximizing the secrecy sum rate under the constraints
of the achievable rate of the legitimate channels. To
tackle the non-convexity optimization problem, a RL-
based alternative optimization algorithm is proposed. In
the first step of the proposed two-stage method, a Q-
learning network is adopted to obtain the optimal action
with given the location of the UAV node. Through a
lot of exploration of the wireless environment, the Q-
learning networks approach the optimal location trans-
fer strategy of the UAV, even without the wireless chan-
nel state information. Afterwards, with the help of suc-
cessive convex approximation, the optimal power allo-
cation scheme for the updated trajectory is obtained by
using convex optimization tools. Simulation results ver-
ify the convergence and effectiveness of the proposed
algorithm. In future works, we will combine NOMA-
UAV with other emerging technologies, such as Recon-
figurable Intelligent Surface (RIS) and mmWave, and
discuss the effects of system parameters on the secure
communications.
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