37 research outputs found

    Genetic Divergence between Freshwater and Marine Morphs of Alewife (Alosa pseudoharengus): A ‘Next-Generation’ Sequencing Analysis

    Get PDF
    Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes

    A Positive Regulatory Loop between foxi3a and foxi3b Is Essential for Specification and Differentiation of Zebrafish Epidermal Ionocytes

    Get PDF
    BACKGROUND: Epidermal ionocytes play essential roles in the transepithelial transportation of ions, water, and acid-base balance in fish embryos before their branchial counterparts are fully functional. However, the mechanism controlling epidermal ionocyte specification and differentiation remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: In zebrafish, we demonstrated that Delta-Notch-mediated lateral inhibition plays a vital role in singling out epidermal ionocyte progenitors from epidermal stem cells. The entire epidermal ionocyte domain of genetic mutants and morphants, which failed to transmit the DeltaC-Notch1a/Notch3 signal from sending cells (epidermal ionocytes) to receiving cells (epidermal stem cells), differentiates into epidermal ionocytes. The low Notch activity in epidermal ionocyte progenitors is permissive for activating winged helix/forkhead box transcription factors of foxi3a and foxi3b. Through gain- and loss-of-function assays, we show that the foxi3a-foxi3b regulatory loop functions as a master regulator to mediate a dual role of specifying epidermal ionocyte progenitors as well as of subsequently promoting differentiation of Na(+),K(+)-ATPase-rich cells and H(+)-ATPase-rich cells in a concentration-dependent manner. CONCLUSIONS/SIGNIFICANCE: This study provides a framework to show the molecular mechanism controlling epidermal ionocyte specification and differentiation in a low vertebrate for the first time. We propose that the positive regulatory loop between foxi3a and foxi3b not only drives early ionocyte differentiation but also prevents the complete blockage of ionocyte differentiation when the master regulator of foxi3 function is unilaterally compromised

    Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon

    Get PDF
    Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3− and 2CO32−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size

    Pituitary hormone mRNA expression in European sea bass Dicentrarchus labrax in seawater and following acclimation to fresh water

    Get PDF
    Contains fulltext : 35512.pdf (publisher's version ) (Open Access)The mRNA expression of pituitary prolactin (prl), growth hormone (gh), somatolactin (sl), proopiomelanocortin (pomc), and gonadotropins (gthI and gthII) was quantified by real-time PCR, in sea bass, Dicentrarchus labrax, adapted for 1 month to seawater (SW) or freshwater (FW). In addition, IGF-I (igfI) mRNA expression in liver and branchial Na(+)/K(+)-ATPase activity were determined. L17 ribosomal protein (rpL17) and elongation factor 1alpha (ef1alpha) were validated as reference genes in real-time PCR in the experimental context. The real-time PCR assays were validated for the different hormone genes considered. Expression of pituitary pomc, gthI, gthII, gh, and liver igfI was not significantly different between FW and SW fish. Pituitary prlwas 4.5-foldhigher in FWthan in SW, whereas pituitary sl was 1.8-fold higher in SW- compared with FW-adapted fish. Gill Na(+)/K(+)-ATPase specific activity was 2.3-fold higher in FW sea bass compared with SW fish. Plasma cortisol levels were 6.5-fold lower in SW- than in FW-adapted specimens. The results are discussed in relation to the osmoregulatory strategy of this euryhaline SW species, which displays features that do not fit present models based on salmonids and FWeuryhaline teleosts
    corecore