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Abstract

The mRNA expression of pituitary prolactin (prl), growth
hormone (gh), somatolactin (sl), proopiomelanocortin (pomc),
and gonadotropins (gthl and gthll) was quantified by real-time
PCR, in sea bass, Dicentrarchus labrax, adapted for 1 month to
seawater (SW) or freshwater (FW). In addition, IGF-1 (igfl)
mRNA expression in liver and branchial Na+/K +-ATPase
activity were determined. L17 ribosomal protein (rpL17) and
elongation factor 1a (efla) were validated as reference genes in
real-time PCR in the experimental context. The real-time
PCR assays were validated for the different hormone genes
considered. Expression of pituitary pomc, gthl, gthll, gh, and

Introduction

Endocrine control ofosmoregulation has been studied only in
a limited number of teleostean species, with an emphasis on
salmonids. These studies underline the importance of
pituitary hormones, such as prolactin (Hirano et al. 1987,
Manzon 2002) or growth hormone (i.e. the gh/igfl axis;
Sakamoto etal. 1993, McCormick 2001) in the adaptation to
gradual or rapid salinity changes; also in the ontogenetic
acquisition ofsalinity tolerance, these hormones play a pivotal
role Beeuf 1993, Varsamos et al. 2005). The hormones target
ionocytes (Pisam & Rambourg 1991, Sakamoto et al. 2001)
and the ion transporters therein (mainly Na+/K +-ATPase),
in osmoregulatory tissues (Marshall 1995, McCormick 1995,
Manzon 2002). They also affect mechanisms involved in the
control of water balance (Fuentes & Eddy 1997).

The European sea bass (Dicentrarchus labrax Linnaeus 1758)
is a marine teleost fish which has aroused significant
socioeconomic and scientific interest, especially around the
Mediterranean Sea (Pickett & Pawson 1994). Its remarkably
strong euryhalinity —it thrives in fresh water (FW), seawater
(SW) and even concentrated SW —makes this species an
excellent model to study adaptive ecophysiology. In previous
works, we have determined the tolerance ofsea bass to hyper-
saline SW (Varsamos 2002), explored the fundamental
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liver igfl was not significantly different between FW and SW
fish. Pituitary prlwas 4 .5-fold higher in FW than in SW, whereas
pituitary sl was 1.8-fold higher in SW- compared with
FW-adapted fish. Gill Na+/K +-ATPase specific activity was
2.3-fold higher in FW sea bass compared with SW fish. Plasma
cortisol levels were 6.5-fold lower in SW- than in FW-adapted
specimens. The results are discussed in relation to the
osmoregulatory strategy of this euryhaline SW species, which
displays features that do not fit present models based on
salmonids and FW euryhaline teleosts.
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ultrastructural and physiological bases for its euryhalinity
(Varsamos et al. 2002b) and described the development of its
osmoregulatory capacity throughout post-embryonic
development (Varsamos et al. 2001, 2002a, 2004). Interest-
ingly, the osmoregulatory strategy of sea bass during
adaptation to FW differs from that of other euryhaline
teleosts. In fact, when sea bass moves from SW to FW,
its branchial ionocytes undergo morphological changes
(Varsamos et al. 2002b) that remind of phenomena normally
seen when euryhaline fish move oppositely, i.e. from FW to
SW. Indeed, these changes are thus opposite to those seen in
salmonids that return to FW for spawning (Pisam &
Rambourg 1991). Hence, an investigation into the endocrine
control of the osmoregulatory processes could further our
understanding of the adaptive strategy employed by this
marine species to enter FW habitats.

To date, mainly semi-quantitative approaches have been
used to monitor the gene expression in fish and only limited
data have been generated by real-time quantitative PCR, a
powerful technique for profiling gene expression (Bustin et al.
2005). Although semi-quantitative methods are reliable, they
are generally complex and their results cannot be easily
compared with those obtained in other species or with those
of independent experiments. Implementation of standard
real-time PCR protocols should enhance developments in
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comparative physiology. To study the involvement ofpituitary
hormones known to be involved in the adaptation to different
salinities, we made a quantitative profile ofa series ofpituitary
mRNAs by real-time quantitative PCR ofsea bass adapted for
1 month to SW or FW. We considered hormones with
established effects on osmoregulatory processes in teleosts, viz.
prolactin (prl), growth hormone (gh), somatolactin (sl),
proopiomelanocortin (pomc); the gonadotropins (gthl and
I1) were considered as well, as reproduction is known to
compromise osmoregulation and vice versa. Liver insulin-like
growth factor-1 (igfl) mMRNA was also assessed as a second
parameter ofthe gh/igfl axis; the liver is generally considered
as the main source of circulating igfl (Plisetskaya 1998),
although other peripheral sites of production are known
(Sakamoto & Hirano 1993). Plasma cortisol (widely
considered the SW-adapting hormone) levels were also
determined. Branchial Na+/K +-ATPase activity was assayed
to determine potential correlations between pituitary
hormone expression and activity of this key enzyme in ion
transport and osmoregulation.

Materials and Methods

Fish and experimental design

Fish were kept in the aquaculture facilities of the Station
Biologique de Sete (Herault, France) in early 2004. Thirty
fish (weight: 250 G 50 g) ofidentical genetic origin and reared
in SW from hatching were randomly split into two batches of
15 fish transferred to two 2 m3tanks containing SW (salinity:
35%0). In one tank, salinity was reduced by the addition of
dechlorinated FW to reach 0.3% after 1 week. Temperature
in both tanks ranged between 11 and 14 °C. The fish were fed
commercial pellets, at a ration of 2% of the estimated body
weight per day. They were starved 24 h before sampling
(routine precaution before fish handling).

Sampling, RN A isolation, and cD NA synthesis

After 1 month ofadaptation, ten fish from each salinity were
randomly netted and rapidly sacrificed by decapitation.
Pituitary glands were dissected on ice, placed in individual
vials containing RNAlater (Ambion, Cambridgeshire, UK)
to preserve RNA for molecular analyses and frozen at
—20 °C until further processing; the liver was rapidly taken
out and small portions (1—2 mm ) treated similarly.

A commercial kit (SV Total RNA Isolation System;
Promega), which combines the protective properties of
guanidine thiocyanate and b-mercaptoethanol to inactivate
RNases and includes a DNase treatment to remove
contaminating DNA, was used to extract total RNA from
individual pituitary and liver samples. RN A was finally eluted
with 15 ml nuclease-free H20 and stored at —80 °C.

RNA concentration, integrity, and purity of each sample
were determined with an RN A Bioanalyzer 2100 (Agilent
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Technologies, Palo Alto, CA, USA). The method employs
electrophoretic analysis with microfluidics RN A Nano-chips
(Agilent, USA) and fluorescence monitoring. For each total
RNA sample, the concentration was measured in duplicate
on 1 ml aliquots. Electrophoresis was conducted inside the
Agilent Bioanalyzer and results were analyzed with Agilent
2100 Bio Sizing software.

For synthesis offirst strand cDNA, an ‘alien’gene (NRNA
of chlorophyll A/B-binding protein (CAB) from Arabidopsis
thaliana) was used to calibrate reverse transcription (Varlet-
Marie et al. 2004): 0.6 mg total RNA and 1 ml CAB (4408
copies; Stratagene) were then reverse transcribed with
oligo-dT as primer and SuperScript Il reverse transcriptase
(SuperScript 1l first-strand synthesis kit, Invitrogen). The
resultant cDNAs were checked by conventional PCR and
stored at —20 °C.

Primer design for target and reference genes

Sequences available on the GenBank database allowed primer
design for most of the genes used in the present work
(Table 1). Two to four primer sets (purchased from Sigma
Genosys, UK) were designed for each gene with Primer 3
software (http://frodo.wi.mit.edu/cgi-bin/primer3/pri-
mer3_www.cgi) and different PCR conditions were tested
for each couple ofprimers to determine the most efficient set
for PCR and real-time quantitative PCR. Control or
invariant internal ‘house-keeping’ genes were necessary for
the global normalization of the quantification by real-time
PCR. The candidate control genes were the L17 ribosomal
protein (rpL17), a sea bass house-keeping gene validated
previously (Varsamos et al. 2003) and elongation factor la
(efla). To determine sea bass efla-specific primers, PCR was
performed on cDNA obtained from sea bass pituitary RNA
with degenerate primers designed on the basis of consensus
efla sequences (GenBank; http://www.ncbi.nlm.nih.gov/
Genbank/index.html).

After an initial denaturing step at 95 °C for 2 min, PCR
was performed on 1 ml template cDNA during 40 cycles of
95 °C for 30 s, 50 °C for 30 s, and 72 °C for 1 min. A final
extension step at 72 °C for 2 min was carried out. PCR
products were analyzed by electrophoresis on a 1.5%
agarose/ethidium bromide gel, cloned and sequenced.

Quantification of target and reference gene expression

Quantification of prl, gh, sl, pomc, gthl, and gthll gene
expression on sea bass cDNAs in pituitary gland, of igfl
expression in liver and of rpL17 and efla in both pituitary
gland and liver, was carried out by means of real-time
quantitative PCR using a Light Cycler (Roche) according to
Varsamos et al. (2003).

Dilutions of a reference sample were used to obtain the
calibration curve, demonstrating a linear relationship between
threshold cycle (Ct) and logl10 of template availability. Ten
microliter reactions were run containing 2 m PCR Mix

www.endocrinology-journals.org
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Table 1 Primers sequences for quantification of sea bass (Dicentrarchus labrax) hormone expression by real-time quantitative PCR (W = A/T)

Expected Gene sequence references/

Primers Primers sequences (5'-3") size (bp) accession no

Genes

Prolactin (prl) PRL DL2-F GCTCTGACACACTGCACTCC 219 Doliana et al. (1994)
PRL DL2-R AGGATTACAAGGGGGTCTCG X78723

Growth hormone (gh) GH DLI-F GACAAGCACGAGACACAACG 195 Doliana et al. (1992)
GH DLI-R CTGTCAGGGAACATCTCTGC

Proopiomelanocortin (pomc) Dlp-F AAGCCTGTTGGACGAAAGC 191 Varsamos etal. (2003)
DIp-R GAGCCATCCTTCTTCTCGTG AY691808

Somatolactin (sl) SL DLI-F CATCACCAAAGCCTTACCC 300 Company et al. (2000)
SL DLI-R GGCACATCATACTGGAATAGGC AJ277390

Gonadotropin | (gthl) GTHI DL2-F GTGCTACCACGAGGATCTGG 208 Mateos et al. (2003)
GTHI DL2-R GGGTATGTCTCCAGGAAAGC AF543314

Gonadotropin Il (gthll) GTHII DLI-F CAGAGTGATGTTCCCCTTGG 203 Mateos et al. (2003)
GTHII DLI-R TGACAGGGTCCTTAGTGATGC AF543315

Insulin-like growth factor I (igfl) IGFI DLI-F CGCTGCAGTTTGTGTGTGG 207 AY800248
IGEl DLLR CTCTTGGCATGTCTGTGTGG

Elongation factor la (efla) EF1 DLI-F GGCTGGTATCTCCAAGAACG 239 Present study
EF1 DL1-R GTCTCCAGCATGTTGTCWCC

Ribosomal protein L17 (rpL17) DIrpL17-F CTGGCTTGCCTTTCTTGACT 201 AF139590
DIrpL17-R GAGGACGTGGTGGTTCATCT

Chlorophyll A/B-binding protein (CAB) CAB-F GCATTTGTTGAGCACCAGAG 259 Varlet-Marie etal. (2004)
CAB-R TATCGCCAATGTTGTTGTGC

All except the last (i.e. CAB) gene sequence references are from sea bass. Primers codes are arbitrary.

(containing SYBR Green and Tag DNA polymerase,
purchased from Roche), 0.5 m of each primer (20 mM),
6 ml nuclease-free H20 and 1 mltemplate DNA (measured in
duplicate). The thermal profile used for real-time PCR
consisted of a step at 95 °C for 10 min and 40 cycles of
denaturing at 95 °C for 15 s, annealing at 62 °C for 4 s and
elongation at 72 °C for 8 s. After the last cycle, temperature in
the Light Cycler chamber increased to 95 °C and then
decreased to 62 °C for 30 s. Then it was increased gradually to
95 °C to obtain the melting curves ofthe amplified fragments.
Absence of non-specific PCR products and primer dimers
was checked by the melting curve analysis and electrophoresis
on 8% acrylamide/SYBR Green gel.

Quantification and analysis of the results were performed
using Light Cycler Relative Quantification Software 1.0
(Roche) and calculations were done according to Rasmussen
(2001). Both ‘second derivative’ and ‘fit point’ methods were
applied to the data set. Ct values from target genes were
normalized to CAB Ctvalues for each individual sample. The
quantification ofthe gene expression is presented both in terms
of absolute number of copies of MRNA per microgram total
RN A and relative to the expression ofhouse-keeping genes.

Plasma cortisol levels

Plasma concentrations ofcortisol were determined in triplicate
by RIA according to Arends et al. (1998) using a commercial
antiserum (Bioclinical Services Ltd, Cardiff, UK). The cortisol
antibody cross-reactivity with 11-deoxycortisol, cortisone
acetate, cortisone, and 17a-OH-progesterone was 5.9, 0.16,
2.6, and 0.4% respectively. Standards and samples (10 m)inRI1A

www.endocrinology-journals.org

buffer (phosphate—EDTA buffer containing 0.1% 8-anilino-1-
naphthalenesulfonic acid and 0.1% (w/v) bovine g-globulin)
were incubated with 100 mlantiserum (inR 1A buffercontaining
0.2% normal rabbit serum) for 4 h. Samples were incubated
overnight with 100 ml iodinated cortisol (2000 disintegration
per minute; Amersham Nederland BV, ‘s Hertogenbosch, The
Netherlands). Bound and free hormone were separated by
adding 1ml ice-cold precipitation buffer (phosphate—EDTA
buffer containing 2% (w/v) BSA and 5% (w/v) polyethylene
glycol). The tubes were centrifuged at 4 °C (20009, 20 min),
the supernatants removed and counted in a gamma counter
(LKB Wallac, Finland).

Gill NaC /K C-ATPase activity

The first right side gill arch was removed and rinsed in a
solution (pH 7.4) containing 300 mM sucrose, 20 mM
Na2EDTA and 100 mM imidazol (Zaugg 1982), placed in
tubes containing the same solution and stored at —20 °C until
use. During the whole procedure, samples were kept on ice.

Stored samples were thawed at room temperature and
briefly centrifuged. The preservation medium was then
removed, branchial arch cartilage discarded and 2 ml isotonic
isolation medium (1IM: 250 mM sucrose, 5 mM MgClI2 and
5 mM Hepes; pH 7.4) were added in each tube. Samples were
then homogenized in a glass potter homogenization device
and the homogenate obtained was subsequently centrifuged
at 3000g for 5min at 4°C to eliminate debris. The
supernatant containing the plasma membrane fragments was
transferred to new tubes. During the extraction procedure,
samples were maintained at 4 °C on ice.

Journal of Endocrinology (2006) 191, 473-480
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Enzyme specific activity was expressed per milligram
protein. To this end, protein was determined by a colorimetric
method (Bio-Rad) using BSA asreference. Na+/K +-ATPase
specific activity was assessed as the difference of ATP hydrolysis
in the presence of Na+, K+, Mg2+, and ATP, and that in the
same medium without K+ ,butwith an optimal concentration
of ouabain (1 mg/ml; Flik et al. 1983). The amount of
phosphate released was assessed colorimetrically against a
certified standard (Sigma). The enzyme specific activity was
expressed in mmol Pi/h per mg protein.

Statistical analysis

From each ofthe FW and SW tanks, ten fish were sampled and
analyzed, as described above. In two of the FW-adapted fish,
pituitary total RN A was too low following RN A extraction,
reducing n to 8. Data are expressed as mean + SD. and were
checked for normal distribution. Comparisons in gene
expression and gill NaC /K C-ATPase activity between SW
and FW fish were statistically analyzed by Student’s t-test;
statistical significance was accepted when P<0.05.

Results

Normalization and high quality RN A are crucially important
to produce reliable quantification by real-time PCR.
Measurements of RNA concentrations using the Agilent
2100 Bioanalyzer confirmed the quality of RNA isolation
procedure and allowed the same amount of RN A to be used
for reverse transcription (RT) ofthe individual samples. The
‘alien’ gene used in this study (CAB) allowed normalization of
the results of the RT by correction for target gene Ct values
with the Ct values of the CAB for each individual sample.
Quantification of expression data obtained by either the
‘second derivative’ or the ‘fit point” methods resulted in a
similar outcome; data obtained by the ‘second derivative’
method are presented here. Abundance of mRNA s
expressed in terms of number of copies per microgram
RNA aswell as in values relative to the house-keeping genes.

The efficiencies of the real-time PCR for all the genes
examined in this study ranged between 1.804 and 1.996
(Table 2).

The house-keeping genes tested in the present work were
validated as controls for experiments involving sea bass adapted
to SWand FW, since no significant variation in their expression
was found, either in pituitary glands or in liver, independent of
ambient salinity. In terms of number of copies per microgram
RNA (Fig. 1), expression levels ofrpL17 in the pituitary of SW
and FW fish were 962 000 + 40 485 and 1 192 671 +136 999
respectively (P=044). No differences were found in rpL17
expression levels in liver (approximately 600 000 copies per
microgram RNA; P=0.8). Expression levels of efla, in terms
ofthe number of copies per microgram RN A, in the pituitary
of SWand FW fish were 1094 934 + 82 131 and 1488 963 +
239 786 respectively (P=045; Fig. 1).
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Table 2 Efficiencies of real-time quantitative PCR
applied for quantification of sea bass (Dicen-
trarchus labrax) hormone expression in fish
maintained in SW and FW

Efficiencies

Genes

efla 1-953
rpL17 (pituitary) 1.883
pri 1.884
gh 1.961
sl 1.907
pomc 1.804
gthl 1.958
gthll 1.843
igfl (liver) 1.973
rpL17 (liver) 1.996

Efficiency=10e(—1/a);a, slope of the standard curve.

Pituitary prl mRN A expression dramatically increased after
acclimation ofseabass to FW Interms ofnumber of copies per
microgram RN A (Fig. 1), the expression level ofprl in FW fish
was 4.5-fold higher (P< 0.0001) compared with SW fish (about
30 millions copies in SW and 136 millions copies in FW).
Relative to rpL17 orefla, prl expression was significantly lower
(P<0.0001) in SW fish than in FW fish (Table 3). The prl gene
had the second highest transcriptional level in FW fish, after
POMC (in FW and SW fish, see below) compared with the
other target genes (Fig. 1).

The numberofcopies ofgh per microgram RN A also tended
to be increased in pituitary gland of FW fish (1.9-fold higher
than in SW fish; Fig. 1), but this difference was just not
statistically significant, neither for the number ofcopies, nor for
the expression relative to rpL17 or efla (Table 3). Expression of
igfl mMRNA in liver did not significantly differbetween FW and
SW sea bass (Table 3). The number of copies per microgram
RNA ofthishormone mRNA in the liver was very low in both
SWand FW conditions (325 + 57 and 408 + 47 respectively).

Pituitary sl mRN A expression significantly decreased after
acclimation of sea bass to FW. The number of copies per
microgram RNA in FW fish (10 326 914+ 920 540) was
1.8-fold lower (P<0.05) compared with SW fish
(18 709 872 + 3 499 884) (Fig. 1). The mRNA expression
relative to rpL17 or efla of SW and FW fish was also
significantly different (P<0.05; Table 3).

Expression levels of pomc mRNA were similar in FW and
SW sea bass (Table 3). The number of copies per microgram
RNA ofthis prohormone in the pituitary of SW and FW fish
was very high (about 250 millions copies); the abundance ofthis
prohormone was much higher than any ofthe other target genes
tested (Fig. 1). Expression of gthl and gthll mRNA in the
pituitary gland also did not significantly differbetween seabass in
FW or SW (Table 3). In terms of number of copies per
microgram RN A, mean mRNA expression level ofgthl in SW
fish was 2.1-fold lower compared with FW, but there was no
statistically significant difference (Fig. 1).

www.endocrinology-journals.org
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Figure 1 Number of copies per microgram total RNA of pituitary prl, gh, sl, pomc, gthl, gthll, rpL17, efla, and of liver igfl, rpL17
(mean + S.D.;n= 8-10), in sea bass (Dicentrarchus labrax) maintained in SW (35%o0) or adapted for 1 month in FW (0.3%0). Symbols
indicate significant differences between the two salinity conditions, *P<0.05, +P<0.0001.

Plasma cortisol levels were 6.5-fold lower (P< 0.001) in
SW- than in FW-adapted specimens (4.0+ 1.9 and 26.0 +
8.5 nM respectively).

Gill NaC/KC-ATPase-specific activity was 2.3-fold
higher in FW than in SW: it was 7.00+ 0.71 and 3.03+
0.56 mmol Pi/h per mg protein respectively.

Discussion

The aim of this study was to quantitatively compare mRNA
levels of pituitary hormones in sea bass kept in FW or SW, by
measuring mRNA levels by real-time PCR. Although this

technique has become one of the most appropriate ways to
detect and quantify mRNA expression, normalization is
necessary at different steps ofits implementation to ensure data
reliability and consistency (Bustin et al. 2005). We first
normalized the rate ofthe RT by introducing an ‘alien’ gene,
i.e. CAB (see Materials and Methods section). To quantify the
level ofmR N A expression ofa target gene, it is also necessary to
measure the expression level of a constitutively transcribed
house-keeping gene treated identically asthe targetgene prior to
measurements. However, significant differences may exist (up to
tenfold) in the expression levels ofendogenous reference genes
that have commonly been used to normalize mRN A expression

Table 3 Hormone mRNA expression (mean + s.D.;n= 8-10) in sea bass (Dicentrarchus labrax)
maintained in SW (35 %o) or adapted for one month to FW (0-3 %o)

Relative to 117

Salinity mMRNA expression
Hormone
prl SW 1-30+ 0-03
FwW 1-50 + 0-02
gh sSw 1-16 + 0-02
FwW 1-20 + 0-02
sl sSw 1-27 + 0-02
FwW 1-20 + 0-01
pomc SW 1-51 +0-03
Fw 1-50 + 0-03
gthl sSw 1-11+0-03
Fw 1-17 + 0-03
gttiu SW 1-12+0-05
Fw 1-17 + 0-03
igfl (liver) sSw 0-61 +0-003
Fw 0-62+0-004

Relative to efla

P mMRNA expression P
<0-0001 1-22 + 0-02 < 0-0001
1-40 + 0-01
0-37 1-09 + 0-02 0-42
1-11+0-02
<0-05 1-20 + 0-02 < 0-05
1-12 + 0-02
0-81 1-42 + 0-02 0-64
1-40 + 0-03
0-20 1-04 + 0-03 0-24
1-09 + 0-03
0-50 1-05 + 0-05 0-57
1-09 + 0-04
0-24 -

For each hormone, mRNA expression has been normalized on the expression of the alien gene and is expressed in
values relative to the expression of the house keeping genes.

www.endocrinology-journals.org
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oftarget genes (Bustin 2000). There is increasing evidence that
genes encoding structural ribosomal proteins or translation
factors are among the genes with the lowest transcriptional
regulation (Gray & Wickens 1998, Frost & Nilsen 2003). In the
present study, we demonstrate that expression levels of rpL17
and efla did not vary between SWand FW sea bass (D. labrax);
these genes were consequently considered suitable for internal
calibration of real-time PCR data in this species. Since
co-regulation ofrpL17 (structural component ofthe ribosome)
and ofefla (involved in translation) seems unlikely, the use of
both as reference genes should make quantification completely
reliable.

Considering the precautions mentioned above, our data
more accurately compare mRNA expression of genes
between experimental conditions (the main thrust of this
work) and to a lesser degree estimate differences in mMRNA
expression between genes within individuals. We focused on
the comparison ofpituitary hormone mRN A synthesis under
two steady-state conditions, proceeding from the notion that
significant differences in the gene expression must correspond
to anticipated and well-known differences in protein
productions and secretion.

The eventual physiological interpretation of the protein
output of cells requires aspects such as differential storage and
post-translational processing, phenomena we did not address
here. However, this study is unique as it is the first to address
absolute mRNA quantification of European sea bass
hormone genes by real-time quantitative PCR. Most studies
so far and mentioned below concern data on hormone
mRNA expression in fishes obtained by means of semi-
quantitative methods (blotting, RN Ase protection assays) that
allow only qualitative comparisons.

An interesting finding ofthe present study is the differential
expression ofsSIMRN A in seabassin SWandFW. To the best of
our knowledge, this is the first report on a putative role of
pituitary sl in teleost osmoregulation. Sl is a recently (early
1990s ofthe former century) discovered member ofthe gh/prl
family, produced in the pituitary pars intermedia (Ono et al.
1990). Most ofthe studies published on sl concern only asingle
group of fish, viz. salmonids, and although these studies
highlight the pleiotropic character of the hormone (Ono &
Kawauchi 1994, Kakizawa et al. 1997, Perez-Sanchez et al.
2002), still little isknown on slphysiology. Although asecond sl
gene has been recently found in zebrafish (Zhu etal. 2004), in
seabassaswell asin most ofthe studied species, only one slgene
has been reported to date (Company et al. 2000). We report
here that pituitary mRNA level of this hormone was
significantly higher (1.8-fold) in SW than FW sea bass.
Down-regulation ofsimRNA in FW suggests an involvement
in hyposmotic regulation in this species.

Prlandgh, the two other members ofthe pleiotropic sl/prl/gh
gene family, appear to antagonize each other in salinity
adaptation (reviews in McCormick 2001, Manzon 2002).
Indeed, in seabasstoo, pituitary prim RN A increased 4.5-fold in
FW sea bass compared with SW, congruent with the established
key role of this hormone in hyperosmotic regulation.
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Remarkably, in both FW and SW, prl mRNA levels were
relatively higher than the mRNA expression of most other
genes quantified in this work, which probably underlines the
wide range ofbiological activities of this hormone (Bjornsson
etal. 2002, Perez-Sanchez etal. 2002) and aparticular role forprl
in SW seabass. Although the role ofprl in FW adaptation varies
among species, it iswell established as the hormone preventing
loss of ions (particularly Na and CI ) and decreasing
integumental permeability to water of osmoregulatory organs
in euryhaline teleosts (reviews in Hirano et al. 1987, Manzon
2002). A good correlation between prim RN A expressionin the
pituitary and prl plasma concentration has been shown in
Atlantic salmon Salmo salar, since both are elevated during
smoltification and decrease after entry ofcompletely smoltified
fishin SW (Boeuf 1993, Agiistsson et al. 2003). Moreover, both
mRNA levels and plasma protein decrease after transfer from
FW to isosmotic (brackish) water in channel catfish Ictalurus
punctatus (Tang et al. 2001) as well as in the tilapia Oreochromis
niloticus (Auperin et al. 1994). Our results show that increased
pituitary prl levels are part ofthe osmoregulatory strategy in FW
adaptation ofsea bass.

In salmonid species, prl may antagonize the SW-adaptive
actions of gh (Sakamoto et al. 1993, McCormick 1995,
Seidelin & Madsen 1997). Some (if not all) of the
osmoregulatory effects of gh are mediated by igfl which is
known, indeed, to interact with both prl and gh (Mancera &
McCormick 1998, Fruchtman et al. 2001, Kajimura et al.
2002, Perez-Sanchez et al. 2002). We found no significant
difference either in sea bass pituitary gh mRNA level, or in
liver igfl mRN A expression, whether the fish were in FW or
SW. Yet, unaffected pituitary gh or liver igfl mRNA levels in
SW and FW were also reported for the euryhaline
Mozambique tilapia Oreochromis mossambicus (Ayson et al.
1994) and the rainbow trout Oncorhynchus mykiss (Sakamoto
& Hirano 1993), which could indicate that the SW-adaptive
actions of gh/igfl are particular to parr—smolt transformation
of salmonids. Interestingly, the pituitary gh mRNA level
(mean value) was about twofold higher in FW sea bass, and
although the difference was not statistically significant because
ofthe high variability between samples, it is a response to FW
adaptation different to what one would predict from salmonid
responses. In Mozambique tilapia, Riley et al. (2003) postulated
that transfer from SW to FW could activate the gh/igfl axis.
Absence of significant differences in gh and igfl mRNA
expression does not allow to conclude that these hormones are
not involved in sea bass osmoregulation. Itisvery likely that in
this species when in FW or SW, metabolic clearance and
distribution space for gh and igfl differ, but we do not know
how these processes and properties relate to mRNA
expression, nor how the kinetics ofthe activation/deactivation
of the gh/igfl axis are during salinity challenges.

Prl and gh plus igfl, interact with cortisol, widely
considered the SW-adapting hormone (reviews in Sakamoto
et al. 1993, McCormick 1995). Interestingly, plasma cortisol
levels were higher in FW-adapted than in SW maintained sea
bass specimens. The endocrine control ofcortisol secretion in
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teleosts is dominated by the pituitary gland, in particular by
acth and a-msh plus b-endorphin (reviews in Mayer-Gostan
et al. 1987, Wendelaar Bonga 1997). These peptides are
derived from the same precursor, pomc. In sea bass, no
difference was found in pituitary pomc mRNA level in SW
or FW fish. In accordance with a previous study (Varsamos et
al. 2003), pituitary pomc mRNA levels are very high (2—3 X
10 copies/mg RNA) under both water salinity conditions.
Unfortunately, we did not discriminate between pituitary pars
distalis (acth cells) and pars intermedia (msh cells), as the small
acth cell volume did not allow the anticipated analyses.
Obviously, differences in acth-cell pomc mRNA expression
in FW and SW fish may have gone undetected in our set up,
and this aspect requires further experimentation.

There is some evidence for a complex interaction between
the gnrh-gth sex-steroid axis and the gh/igfl axis, given a
demonstrated role of gh in salmonid reproduction (Bjornsson
et al. 2002). Moreover, sex maturation and treatment with sex
steroids is known to affect SW adaptation of some species
(McCormick 1995, Riley etal. 2002). O ur findings concerning
pituitary gth mRNA expression do not substantiate an
involvement ofthese hormones in salinity adaptation. Although
sea bass can live and grow in FW, it neither does nor can
reproduce in FW (Pickett & Pawson 1994). Moreover, our fish
may be considered sexually immature, which further precludes
differences in expression ofthese genes. More investigations on
salinity effect on gonad maturation and/or on a putative role of
reproductive hormones in osmoregulation will be necessary.

Branchial NaC /K C -ATPase activity was 2.3-fold higher in
FW sea bass compared with SW fish. We (Varsamos et al.
2002a,b) have demonstrated that the euryhalinity ofthis species
relies in part on the phenotypic plasticity ofbranchial ionocytes,
also called mitochondria rich cells (MRC) and their NaC/
K +-ATPase content that differs drastically between FWand SW
Prl, gh, igfl, and cortisol are known to affect MRC number and
size as well as NaC /K C -ATPase activity throughout the post-
embryonic development of teleosts (reviews in McCormick
2001, Sakamoto et al. 2001, Varsamos et al. 2005). Clearly, the
seabass endocrine osmoregulatory repertoire differs from that of
most other teleosts studied so far. Following transfer from SW to
FW, numbers and size of MRCs increase, as does NaC /K C -
ATPase activity, concomitantly with elevated prl expression and
plasma cortisol levels. This is counterintuitive to the well-
documented inhibitory actions of prl on these cells and this
enzyme in other euryhaline teleosts (Flik et al. 1994, Manzon
2002). Moreover, sl appears to be implicated in sea bass
osmoregulation, prompting further investigations on this
hormone in teleost salinity adaptation. At last, our results do
not allow the exclusion of a putative involvement of gh in FW
adaptation of this species. The present study thus constitutes a
first step towards the assessment of pituitary hormonal
messengers involved in control of osmoregulation in the
European sea bass D. labrax. More work isneeded on hormone
expression and/or concentrations of the proteins of these
hormones in plasma and tissues, especially for prl, gh, and sl. For
the mRNASs involved we now have a starting point ofview.
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