10 research outputs found

    Stand Delineation of Pinus sylvestris L. Plantations Suffering Decline Processes Based on Biophysical Tree Crown Variables: A Necessary Tool for Adaptive Silviculture

    Get PDF
    Many planted Pinus forests are severely affected by defoliation and mortality processes caused by pests and droughts. The mapping of forest tree crown variables (e.g., leaf area index and pigments) is particularly useful in stand delineation for the management of declining forests. This work explores the potential of integrating multispectral WorldView-2 (WV-2) and Airborne Laser Scanning (ALS) data for stand delineation based on selected tree crown variables in Pinus sylvestris plantations in southern Spain. Needle pigments (chlorophyll and carotenes) and leaf area index (LAI) were quantified. Eight vegetation indices and ALS-derived metrics were produced, and seven predictors were selected to estimate and map tree crown variables using a Random Forest method and Gini index. Chlorophylls a and b (Chla and Chlb) were significantly higher in the non-defoliated and moderately defoliated trees than in severely defoliated trees (F = 14.02, p < 0.001 for Chla; F = 13.09, p < 0.001 for Chlb). A similar response was observed for carotenoids (Car) (F = 14.13, p < 0.001). The LAI also showed significant differences among the defoliation levels (F = 26.5, p < 0.001). The model for the chlorophyll a pigment used two vegetation indices, Plant Senescence Reflectance Index (PSRI) and Carotenoid Reflectance Index (CRI); three WV-2 band metrics, and three ALS metrics. The model built to describe the tree Chlb content used similar variables. The defoliation classification model was established with a single vegetation index, Green Normalized Difference Vegetation Index (GNDVI); two metrics of the blue band, and two ALS metrics. The pigment contents models provided R2 values of 0.87 (Chla, RMSE = 12.98%), 0.74 (Chlb, RMSE = 10.39%), and 0.88 (Car, RMSE = 10.05%). The cross-validated confusion matrix achieved a high overall classification accuracy (84.05%) and Kappa index (0.76). Defoliation and Chla showed the validation values for segmentations and, therefore, in the generation of the stand delineation. A total of 104 stands were delineated, ranging from 6.96 to 54.62 ha (average stand area = 16.26 ha). The distribution map of the predicted severity values in the P. sylvestris plantations showed a mosaic of severity patterns at the stand and individual tree scales. Overall, the findings of this work underscore the potential of WV-2 and ALS data integration for the assessment of stand delineation based on tree health status. The derived cartography is a relevant tool for developing adaptive silvicultural practices to reduce Pinus sylvestris mortality in planted forests at risk due to climate change

    TECHNOLOGICAL CAPABILITIES AND PATTERNS OF INCOME CONVERGENCE IN EUROPE: A CLUSTER ANALYSIS

    Get PDF
    This paper analyses the patterns of convergence across the European Union countries in terms of both economic growth and technological conditions during the period 1995-2013. We apply the methodology of Phillips-Sul (2007) to study convergence in real income per capita and countries’ technological capabilities. We consider separately eight technological indicators as proxies for a country's innovative ability and absorptive capacity. The results support the club convergence hypothesis for income and some technology-related indicators, and offer an approximation to the role that technological capabilities could play in the income convergence process

    Stand Characterization of Eucalyptus spp. Plantations in Uruguay Using Airborne Lidar Scanner Technology

    Get PDF
    Airborne lidar scanner (ALS) technology is used in a variety of applications, including forestry. ALS has enormous potential for the estimation of relevant biometric parameters in forest plantations. This study investigates the use of an object-oriented semi-automated segmentation algorithm for stands delineation, based on modeling ALS data, in plantations of Eucalyptus grandis and E. dunnii in Uruguay. The results show that non-parametric methods delivered more accurate and less biased results for total volume (TV) with R2 0.93, RMSE 20.04 m3 h−1 for E. grandis and R2 0.93, RMSE 18.43 m3 h−1 for E.dunnii; and above ground biomass (AGB) with R2 0.95, RMSE 70.2 kg h−1 for E. grandis and R2 0.96, RMSE: 71.2 Kg h−1 for E. dunnii. Parametric methods performed better for dominant height (Ho) with R2 0.98, RMSE 0.67 m and R2: 0.96, RMSE: 0.8 m for E. grandis and E. dunnii, respectively. The most informative ALS metrics for the estimation of AGB and TV were metrics related to the elevation in parametric models (Elev.70 and Elev.75), while for the non-parametric models (k-NN) they were Elev.75 and canopy density. For Ho, the ALS metrics selected were also related to elevation both in the parametric (Elev.90 and Elev.99) and random forest models (Elev.max and Elev.75). The segmentation methodology proposed here matched closely the segments delineated by human operators, and provides a low-cost, cost-effective, easy to apply and update model aimed at generating AGB or TV maps for harvest tasks, based on rasters derived from ALS metrics. The present research shows the capacity of ALS metrics to improve extensive strategic inventories; validating and promoting the adoption of ALS technology for inventory forest stands of Eucalyptus spp. in Uruguay

    Temporal changes in mediterranean pine forest biomass using synergy models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors

    Get PDF
    Currently, climate change requires the quantification of carbon stored in forest biomass. Synthetic aperture radar (SAR) data offers a significant advantage over other remote detection measurement methods in providing structural and biomass-related information about ecosystems. This study aimed to develop non-parametric Random Forest regression models to assess the changes in the aboveground forest biomass (AGB), basal area (G), and tree density (N) of Mediterranean pine forests by integrating ALOS-PALSAR, Sentinel 1, and Landsat 8 data. Variables selected from the Random Forest models were related to NDVI and optical textural variables. For 2015, the biomass models with the highest performance integrated ALS-ALOS2-Sentinel 1-Landsat 8 data (R2 = 0.59) by following the model using ALS data (R2 = 0.56), and ALOS2-Sentinel 1-Landsat 8 (R2 = 0.50). The validation set showed that R2 values vary from 0.55 (ALOS2-Sentinel 1-Landsat 8) to 0.60 (ALS-ALOS2-Sentinel 1-Landsat 8 model) with RMSE below 20 Mg ha−1. It is noteworthy that the individual Sentinel 1 (R2 = 0.49). and Landsat 8 (R2 = 0.47) models yielded equivalent results. For 2020, the AGB model ALOS2-Sentinel 1-Landsat 8 had a performance of R2 = 0.55 (validation R2 = 0.70) and a RMSE of 9.93 Mg ha−1. For the 2015 forest structural variables, Random Forest models, including ALOS PAL-SAR 2-Sentinel 1 Landsat 8 explained between 30% and 55% of the total variance, and for the 2020 models, they explained between 25% and 55%. Maps of the forests’ structural variables were generated for 2015 and 2020 to assess the changes during this period using the ALOS PALSAR 2-Sentinel 1-Landsat 8 model. Aboveground biomass (AGB), diameter at breast height (dbh), and dominant height (Ho) maps were consistent throughout the entire study area. However, the Random Forest models underestimated higher biomass levels (>100 Mg ha−1) and overestimated moderate biomass levels (30–45 Mg ha−1). The AGB change map showed values ranging from gains of 43.3 Mg ha−1 to losses of −68.8 Mg ha−1 during the study period. The integration of open-access satellite optical and SAR data can significantly enhance AGB estimates to achieve consistent and long-term monitoring of forest carbon dynamics

    Improvements of Fire Fuels Attributes Maps by Integrating Field Inventories, Low Density ALS, and Satellite Data in Complex Mediterranean Forests

    Get PDF
    One of the most determining factors in forest fire behaviour is to characterize forest fuel attributes. We investigated a complex Mediterranean forest type—mountainous Abies pinsapo–Pinus–Quercus–Juniperus with distinct structures, such as broadleaf and needleleaf forests—to integrate field data, low density Airborne Laser Scanning (ALS), and multispectral satellite data for estimating forest fuel attributes. The three-step procedure consisted of: (i) estimating three key forest fuel attributes (biomass, structural complexity and hygroscopicity), (ii) proposing a synthetic index that encompasses the three attributes to quantify the potential capacity for fire propagation, and (iii) generating a cartograph of potential propagation capacity. Our main findings showed that Biomass–ALS calibration models performed well for Abies pinsapo (R2 = 0.69), Juniperus spp. (R2 = 0.70), Pinus halepensis (R2 = 0.59), Pinus spp. mixed (R2 = 0.80), and Pinus spp.–Juniperus spp. (R2 = 0.59) forests. The highest values of biomass were obtained for Pinus halepensis forests (190.43 Mg ha−1). The structural complexity of forest fuels was assessed by calculating the LiDAR Height Diversity Index (LHDI) with regard to the distribution and vertical diversity of the vegetation with the highest values of LHDI, which corresponded to Pinus spp.–evergreen (2.56), Quercus suber (2.54), and Pinus mixed (2.49) forests, with the minimum being obtained for Juniperus (1.37) and shrubs (1.11). High values of the Fuel Desiccation Index (IDM) were obtained for those areas dominated by shrubs (−396.71). Potential Behaviour Biomass Index (ICB) values were high or very high for 11.86% of the area and low or very low for 77.07%. The Potential Behaviour Structural Complexity Index (ICE) was high or very high for 37.23% of the area, and low or very low for 46.35%, and the Potential Behaviour Fuel Desiccation Index (ICD) was opposite to the ICB and ICE, with high or very high values for areas with low biomass and low structural complexity. Potential Fire Behaviour Index (ICP) values were high or very high for 38.25% of the area, and low or very low values for 45.96%. High or very high values of ICP were related to Pinus halepensis and Pinus pinaster forests. Remote sensing has been applied to improve fuel attribute characterisation and cartography, highlighting the utility of integrating multispectral and ALS data to estimate those attributes that are more closely related to the spatial organisation of vegetation

    Site index estimation using airborne laser scanner data in Eucalyptus dunnii maide stands in Uruguay

    Get PDF
    Intensive silviculture demands new inventory tools for better forest management and planning. Airborne laser scanning (ALS) was shown to be one of the best alternatives for high-precision inventories applied to productive plantations. The aim of this study was to generate multiple stand-scale maps of the site index (SI) using ALS data in the intensive silviculture of Eucalyptus dunnii Maide plantations in Uruguay. Forty-three plots (314.16 m3) were established in intensive E. dunnii plantations in the departments of RĂ­o Negro and PaysandĂș (Uruguay). ALS data were obtained for an area of 1995 ha. Linear and Random Forest models were fitted to estimate the height and site index, and OrpheoToolBox (OTB) software was used for stand segmentation. Linear models for dominant height (DH) estimation had a better fit (R2 = 0.84, RMSE = 0.94 m, MAPE = 0.04, Bias = 0.002) than the Random Forest (R2 = 0.85, RMSE = 1.27 m, MAPE = 7.20, Bias=−0.173) model when including only the 99th percentile metric. The coefficient between RMSE values of the cross-validation and RMSE of the model had a higher value for the linear model (0.93) than the Random Forest (0.75). The SI was estimated by applying the RF model, which included the ALS metrics corresponding to the 99th height percentile and the 80th height bicentile (R2 = 0.65; RMSE = 1.62 m). OTB segmentation made it possible to define a minimum segment size of 2.03 ha (spatial radius = 30, range radius = 1 and minimum region size = 64). This study provides a new tool for better forest management and promotes the need for further progress in the application of ALS data in the intensive silviculture of Eucalyptus spp. plantations in Uruguay

    Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: the influence of pulse density

    Get PDF
    Traditionally, forest-stand delineation has been assessed based on orthophotography. The application of LiDAR has improved forest management by providing high-spatial-resolution data on the vertical structure of the forest. The aim of this study was to develop and test a semi-automated algorithm for stands delineation in a plantation of Pinus sylvestris L. using LiDAR data. Three specific objectives were evaluated, i) to assess two complementary LiDAR metrics, Assmann dominant height and basal area, for the characterization of the structure of P. sylvestris Mediterranean forests based on object-oriented segmentation, ii) to evaluate the influence of the LiDAR pulse density on forest-stand delineation accuracy, and iii) to investigate the algorithmƛ effectiveness in the delineation of P. sylvestris stands for map prediction of Assmann dominant height and basal area. Our results show that it is possible to generate accurate P. sylvestris forest-stand segmentations using multiresolution or mean shift segmentation methods, even with low-pulse-density LiDAR − which is an important economic advantage for forest management. However, eCognition multiresolution methods provided better results than the OTB (Orfeo Tool Box) for stand delineation based on dominant height and basal area estimations. Furthermore, the influence of pulse density on the results was not statistically significant in the basal area calculations. However, there was a significant effect of pulse density on Assmann dominant height [F2,9595 = 5.69, p = 0.003].for low pulse density. We propose that the approach shown here should be considered for stand delineation in other large Pinus plantations in Mediterranean regions with similar characteristics

    Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations

    Get PDF
    Forest managers are interested in forest-monitoring strategies using low density Airborne Laser Scanning (ALS). However, little research has used ALS to estimate soil organic carbon (SOC) as a criterion for operational thinning. Our objective was to compare three different thinning intensities in terms of the on-site C stock after 13 years (2004&ndash;2017) and to develop models of biomass (Wt, Mg ha&minus;1) and SOC (Mg ha&minus;1) in Pinus halepensis forest, based on low density ALS in southern Spain. ALS was performed for the area and stand metrics were measured within 83 plots. Non-parametric kNN models were developed to estimate Wt and SOC. The overall C stock was significantly higher in plots subjected to heavy or moderate thinning (101.17 Mg ha&minus;1 and 100.94 Mg ha&minus;1, respectively) than in the control plots (91.83 Mg ha&minus;1). The best Wt and SOC models provided R2 values of 0.82 (Wt, MSNPP) and 0.82 (SOC-S10, RAW). The study area will be able to stock 134,850 Mg of C under a non-intervention scenario and 157,958 Mg of C under the heavy thinning scenario. High-resolution cartography of the predicted C stock is useful for silvicultural planning and may be used for proper management to increase C sequestration in dry P. halepensis forests

    Health Examination for People Aged over 65 years

    No full text
    This programme aims to improve autonomy, safety and active life of people as they age, through the promotion of healthy lifestyles, early detection of risks, environmental adaptations and comprehensive care for frail elderlyYesEl presente programa persigue mejorar la autonomía, la seguridad y la vida activa de las personas a medida que envejecen, a través de la promoción de estilos de vida saludables, de la detección precoz de riesgos, de la adecuación de los entornos y de la atención integral en la situación de fragilidad
    corecore