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Abstract: One of the most determining factors in forest fire behaviour is to characterize forest fuel
attributes. We investigated a complex Mediterranean forest type—mountainous Abies pinsapo–Pinus–
Quercus–Juniperus with distinct structures, such as broadleaf and needleleaf forests—to integrate field
data, low density Airborne Laser Scanning (ALS), and multispectral satellite data for estimating forest
fuel attributes. The three-step procedure consisted of: (i) estimating three key forest fuel attributes
(biomass, structural complexity and hygroscopicity), (ii) proposing a synthetic index that encompasses
the three attributes to quantify the potential capacity for fire propagation, and (iii) generating
a cartograph of potential propagation capacity. Our main findings showed that Biomass–ALS
calibration models performed well for Abies pinsapo (R2 = 0.69), Juniperus spp. (R2 = 0.70), Pinus
halepensis (R2 = 0.59), Pinus spp. mixed (R2 = 0.80), and Pinus spp.–Juniperus spp. (R2 = 0.59) forests.
The highest values of biomass were obtained for Pinus halepensis forests (190.43 Mg ha−1). The
structural complexity of forest fuels was assessed by calculating the LiDAR Height Diversity Index
(LHDI) with regard to the distribution and vertical diversity of the vegetation with the highest values
of LHDI, which corresponded to Pinus spp.–evergreen (2.56), Quercus suber (2.54), and Pinus mixed
(2.49) forests, with the minimum being obtained for Juniperus (1.37) and shrubs (1.11). High values
of the Fuel Desiccation Index (IDM) were obtained for those areas dominated by shrubs (−396.71).
Potential Behaviour Biomass Index (ICB) values were high or very high for 11.86% of the area and
low or very low for 77.07%. The Potential Behaviour Structural Complexity Index (ICE) was high
or very high for 37.23% of the area, and low or very low for 46.35%, and the Potential Behaviour
Fuel Desiccation Index (ICD) was opposite to the ICB and ICE, with high or very high values for
areas with low biomass and low structural complexity. Potential Fire Behaviour Index (ICP) values
were high or very high for 38.25% of the area, and low or very low values for 45.96%. High or very
high values of ICP were related to Pinus halepensis and Pinus pinaster forests. Remote sensing has
been applied to improve fuel attribute characterisation and cartography, highlighting the utility of
integrating multispectral and ALS data to estimate those attributes that are more closely related to
the spatial organisation of vegetation.

Keywords: forest fuel; sensor integration; biomass; structural complexity; fuel moisture

1. Introduction

The main disturbance to forest ecosystems on both a global scale [1] and in Mediter-
ranean areas [2] is forest fires. There has been an increase in the intensity and areas affected
by large fires (>500 ha, GIF) in the last decade, and they have proved to be much more
difficult to control and to increasingly affect people and infrastructures [3]. Climate change
scenarios will exacerbate the problem, with increasingly longer periods of a high risk of
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forest fires, and the occurrence of large forest fires in latitudes and ecosystems in which
vegetation has not evolved with this type of disturbance, and in areas in which there are
not sufficient means to extinguish them and there is no culture of fire.

Fire behaviour has been estimated using mathematical models based on a set of
variables including meteorological data, topography, and fuel type [4]. Calculation methods
lead to a numerical index that is translated as a level of probability of forest fire ignition
and capability of fire spread. Thus, estimating a fire behaviour index involves identifying
the potentially contributing variables and integrating them into a mathematical expression.
One of the most relevant aspects to understand the behaviour of large-scale forest fires is
forest fuels, since fuel determines many of the fire characteristics (for example, intensity,
speed, etc. [5]). Broadscale estimation of forest fuel is relevant to various research areas and
management applications since fuel is the only fire-related component of the landscape that
can be modified through management [6]. Therefore, it is very important to know forest
fuel characteristics and its spatial distribution to assess fire risk and design preventive
treatments and extinction strategies [7]. Wildfire managers need an accurate and complete
characterisation of fuels to predict fire behaviour (by, for example, visually interpreting
the fire spread), which can be done by simulators that support their decisions. Aspects
such as success of the initial attack, appearance of secondary outbreaks, or success of
suppression resources depend directly on this information [8]. Finally, spaciotemporal
information of fuels is needed for development of fire-fighting plans and application of
adequate preventive forestry, which modifies fuel dynamics, fuel reduction, and even
regeneration processes.

In forest fire behaviour index systems, the structural characteristics of vegetation,
fuel load, and moisture content are important input data [9]. Historically, these variables
were estimated for coarse fuel model types from a sparse inventory of forest structure at
stand level. Fuel model classification has been principally based on the estimation of fuel
attributes based on the vertical stratification of different types of vegetation, and with a
relative lack of information on the most dynamic components of fuels, despite the fact that
this is truly relevant, as is the case with the undergrowth vegetation layer. This results
in a generalisation of pre-existing categorical fuel models (e.g., CFFBPS/Prometheus fuel
types [10,11]), rather than using fuel characterisation based on specific quantitative at-
tributes. These types of fuel models have numerous advantages such as the straightforward
application to environments with complex vegetation, the simplicity, and the conceptuali-
sation using dependable and quick-to-apply key vegetation elements [12]. Fire behaviour
models, which are commonly developed through empirical observation, also use this type
of forest fuel characterisation [10]. However, these models and the associated simulations,
although useful, imply a loss of information and numerous limitations when applied to
different tasks related to fire management. This means that a fundamental aspect for forest
fuel characterisation is the attributes used for its characterisation and measurement of these
attributes based on quantifiable data [12,13].

Although fuel attributes vary widely and are quite different in nature, the most
important in regard to fire behaviour [14] are those related to fuel load (e.g., biomass),
water (e.g., hygroscopic change) and structural characteristics (e.g., the vertical structure of
vegetation elements). Moreover, these attributes respond to different spatial and temporal
scales (for example, fuel moisture in the short term) [15]. Thus, characterization of these
fuel attributes makes it possible to discover key aspects of fire behaviour, such as fuel time
ignition, combustion, flame length, or fire spread [16].

Remote sensing has become a widespread and fundamental tool for many aspects
related to forest fires (such as mapping of fire risks, affected area and associated severity,
and regeneration processes) [17]. Remote sensing has been applied to forest fuel assess-
ment [18], for which it provides several advantages over field data-based approaches,
such as generalisation to large areas, cost, automation, and ability to make objective ob-
servations [17]. Sensors can be classified as active, emitting their own energy to register
a result, or passive, limited to recovering the electromagnetic energy originating from
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an external source [19]. Currently, passive sensors from several spaceborne sensors are
routinely producing information on fuel types and fuel attributes, such as fuel moisture [20]
or biomass load [21] which have shown their usefulness in fuel characterization related
to fire management and fire behaviour modelling [17]. In this sense, multispectral or
hyperspectral imagery has been successfully used in fuel moisture assessment, commonly
through vegetation indices (e.g., NDVI, obtaining “greenness” maps of fuel classes through
supervised classifications or decision rules [20]). Satellite imagery from missions such
as Landsat, MODIS, Worldview, and Quickbird have been the most used for this type of
cartography [12,17]. In addition, rapid processing of remote sensing images is important
in large-scale real-time monitoring. Traditional processing methods for remote sensing
data are not cost-effective, but cloud computing services are more adequate [22]. Currently,
different platforms provide these services, such as the Google Earth Engine (GEE). GEE
provides free access to image collections, straightforward management of time series stacks,
and ease of parallel processing, increasing speed computation. However, canopy fuel char-
acteristics that define the most important variables for predicting fire hazard and behaviour
cannot be readily derived from passive sensors [23]. More recently, active sensors, and
particularly LiDAR (Light Detection and Ranging), have provided new options regarding
studying forest fuel attributes [24–27]. Aerial Laser Scanning (ALS) data from the Spanish
National Plan for Aerial Orthophotography (PNOA) have yielded good results for monitor-
ing attributes related to vertical and horizontal structures of forest systems, as well as more
complex attributes (e.g., canopy height, height of different strata, bulk density, and fuel
load) [28]. The attributes related to canopy structural complexity are particularly important
since they determine many aspects related to spread of crown fires [29] and modelling
fire behaviour. New approaches, such as the one developed by Listopad et al. [30], have
emerged to provide estimations of canopy structural complexity based on ALS data.

Therefore, remote sensing is now an essential tool for characterizing and mapping at-
tributes of forest fuel attributes. However, there are still aspects related to the integration of
different fuel attributes, particularly those related to the vertical structure of forest systems,
that could be improved to complement fuel type maps. Despite the widespread availability
and popularity of sophisticated fire growth and simulation modelling frameworks, compa-
rable fuel-based metrics are still important to support fire management decisions. In this
context, the aim of this research was the characterization of forest fuel attributes by integrat-
ing field data, ALS metrics, and time series of satellite imagery to map forest fuel attributes,
and their integration into a simple but intuitive potential fire behaviour index. The specific
objectives were (i) use different field, ALS, and multispectral data to estimate three key
forest fuel attributes (biomass, structural complexity, and hygroscopicity), (ii) propose a
synthetic index that encompasses the three attributes to quantify the potential capacity for
fire propagation, and (iii) generate a cartograph of potential propagation capacity, which
can be used to prevent fires, select priority management areas for fire danger intervention,
and for fire extinction. To apply this methodology, we selected the recently declared Na-
tional Park of Sierra de las Nieves (southern Spain) because it includes vegetation types
with high structural complexity. Our results have several applications for strategic fire
management planning and future research.

2. Materials and Methods
2.1. Study Area

The study area is located in the National and Natural Parks of Sierra de las Nieves
(region of Andalusia, province of Málaga, southern Spain, 37◦22′N, 2◦50′W; 22.979 ha,
between 750 and 1919 m.a.s.l; Figure 1, Supplementary Materials Table S1), which is part of
the Sierra de las Nieves Mediterranean Intercontinental Biosphere Reserve and the Natura
2000 European Ecological Network. It constitutes one of the main centres of biodiversity
and endemicity of the southern Iberian Peninsula and the Mediterranean Basin, mainly
owing to its orographic, climatic, and geological diversity. Forest vegetation is dominated
by pine forests (Pinus halepensis Mill. And Pinus pinaster Aiton.), fir forests (Abies pinsapo
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Clemente ex Boiss.), juniper shrublands (Juniperus phoenicea L.), holm oak forests (Quercus
ilex L.), and mountain gall oak woodlands (Quercus faginea Lam.) with relict Quercus
pyrenaica Wild. Rivers and streams covered by willows (Salix pedicellata Desf.) and Nerium
oleander L. [31]. The climate in Sierra de las Nieves is Mediterranean, with a summer
drought period that extends into the fall. Most of the precipitation occurs in winter and
spring, with a mean annual rainfall between 600 and 1600 mm. Mean annual temperature
ranges from 8 ◦C to 18 ◦C. The summer months are mild with an average maximum daily
temperature of the warmest month (August) between 29 ◦C and 33 ◦C, with infrequent
summer precipitation from thunderstorms.

Figure 1. Location of the study area. Enlarged figure shows the limits of the Sierra de las Nieves
National and Natural Park. A map showing the Natura 2000 network in Andalusia (left bottom inset,
grey area).

Approximately 4000 wildfire events were recorded in the province of Málaga during
the 1988–2020 period, 65% of which burned areas of less than 1 ha. Almost all of these
incidents were extinguished by fire-fighting forces.

2.2. Methodological Framework

This research was developed using a methodological framework divided into three
steps to characterized each of the three fuel attributes assessed (Figure 2): biomass load,
structural complexity, and live fuel moisture.

2.3. Field Data

The field data used in this study were a local forest management inventory. Data
from 450 plots (6.4% of the total study area) located on the forest perimeter “Sierra del
Pinar”, which is completely within the limits of the study area (Supplementary Materials
Figure S1), were used in this study. Circular plots were established at the intersections of
a 200 × 200 m UTM grid for Pinus spp. forests and 167 × 167 m for Abies pinsapo forests
with radii of 13 m. The diameter at breast height (dbh, 1.30 cm height) and total height (Ht)
were measured for all trees of dbh ≥ 7.5 cm (Table 1). The shrub layer was estimated as
area covered (%). The measurements were conducted in 2005.
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Figure 2. Flowchart used to develop Wildfire Potential Behaviour Indices in complex Mediter-
ranean forests.

Table 1. Silvicultural variables of forest types in Sierra de las Nieves National Park (Málaga, south-
ern Spain).

Variable Units Mean Min. Max. St. Dev.

Density Trees ha−1 321.45 18.83 2241.35 368.88
Basal area m2 ha−1 8.28 0.01 73.07 11.01
Mean dbh cm 21.16 3.00 94.00 14.84

Fraction cover % 47.76 0.07 100 41.58

2.4. Forest Fuel Models

A map of fuel models was created by following Rothermel [14], based on the reclassifi-
cation of previous land use cartography [32]. This cartograph was generated by means of
photointerpretation of vegetation at 1:25,000 scale [32] (Figure 1, Supplementary Materials
Table S1). Once forest fuel models were assigned to each vegetation polygon, additional
information concerning vegetation cover, dominant and secondary tree species, shrub
and herbaceous covers of a detail of 5–10% was added using REDIAM-SIOSE (2016, [32]).
Information regarding the species composition of the shrub layer was obtained from the
Spanish National Forest Map (1:50,000, [33]). Species with percentages of forest cover
lower than 25% were eliminated. Finally, six forest types were considered (Supplementary
Materials Table S2). Vegetation with forest cover lower than 10% was considered “not
forests”. The forest fuel model map was developed using ArcGIS Pro 3.0 software and
integrated into an ESRI format file geodatabase [34].

2.5. Remote Sensing Data
2.5.1. Airborne Laser Scanning Data

Airborne Laser Scanning (ALS) data were provided by Andalusian Environmental
Information Network (REDIAM) and Spanish National Aerial Photography Programme
(PNOA, [35]). The study area was surveyed in 2008 and 2020. ALS2008 data had an average
point density of 2 pulses m−2, and ALS2020 had an average point density of 1.5 pulses m−2.
The reference system employed was the European Terrestrial Reference System 89 (ETRS89)



Remote Sens. 2023, 15, 2023 6 of 19

and UTM coordinate system. We assumed accurate georeferencing of 2008 and 2020
datasets during postprocessing and carried out no further co-registration. ALS2008 was
divided into square tiles of 1 × 1 km (data are publicly available in the .las format at:
https://portalrediam.cica.es/descargas/, accessed on 15 January 2020). ALS2020 data are
provided in the .laz format, and each file comprises a square tile of 2 × 2 km (data are
publicly available at: https://centrodedescargas.cnig.es/CentroDescargas/, accessed on
15 May 2023).

2.5.2. ALS Data Processing

ALS data were processed using a combination of FUSION LDV 3.50 [36] and LAStools
v180520 [37] software. Raw ALS point clouds were converted into several intermediate
products: DEM (Digital Elevation Model), normalised point clouds, and CHM (Canopy
Height Model). This was done by first cleaning the noise from the point clouds. ALS points
were classified as ground and non-ground (vegetation) returns using a morphological
filter. Calculation of vegetation height was performed by employing the lasheight tool.
The CloudMetrics tool was used to derive a suite of ALS canopy metrics. A complete
description of ALS-derived canopy height metrics can be found in Mcgaughey [36].

2.5.3. Multispectral Images

Data preparation and image processing were performed with the Google Earth En-
gine (GEE, https://earthengine.google.com/, accessed on 1 June 2023), while the Earth
Engine Python API was used to interact with Earth Engine Servers, using the Python
programming language.

Landsat 8 and Sentinel 2-A images were used to calculate changes in fuel moisture.
Surface temperature was calculated from images obtained by the TIRS sensor (Thermal
Infrared Sensor) of the Landsat 8 satellite (band 10-TIRS-1, 100 m, https://earthexplorer.
usgs.gov/, accessed on 15 May 2023). Surface temperature value (ºK) was obtained after
previous processing of radiance registered by TIRS band 10. Information obtained by the
ASTER sensor (Advanced Spaceborne Thermal Emission and Reflection Radiometer) on
board the TERRA satellite was used as auxiliary information for this process, specifically
the Global Emissivity Dataset (GED) product. GED has a global emissivity coverage with a
spatial resolution of 100 m. Images corresponding to the 2 TIER1 catalogue (a higher level
of quality control) and a processing level of 2 were used, corresponding to the elimination
of atmospheric effects, for which the reflectivity at ground level was obtained.

Normalised Difference Vegetation Index (NDVI) was calculated from Sentinel 2-A
images (Multi Spectral Instrument, 10 m, ESA, https://sentinels.copernicus.eu/web/
sentinel/home, accessed on 16 May 2023).

2.6. Forest Fuel Characteristics
2.6.1. Biomass

Biomass load was calculated for each fuel model based on field data and allometric equa-
tions, both for tree and shrub layers. Three types of allometric equations were used: (i) allometric
equations for Spanish coniferous forest species (input variables Ht and dbh, [38,39]); (ii) allo-
metric equations for Spanish coniferous and hardwood species (input variable dbh [40]);
and (iii) allometric equations for shrub species [41,42] (Supplementary Materials Table S3).
Total biomass per plot was obtained by adding the biomass of trees and shrub strata.

Regression models were fitted to calculate the total biomass of each forest type using
field inventory (Section 2.3) and ALS2008 metrics (Supplementary Materials Table S2) [43].
Once regression models were generated, a biomass map was obtained using ALS2020
metrics at a spatial resolution of 10 m. The cloudmetrics, CSV2grid, and mergeaster modules
of FUSION and the ArcGIS Pro Model Builder tool were used during this process [34,36].
The 3-year time interval between the acquisition of field data (2005) and ALS2008 was
considered negligible owing to forest-stand homogeneity and the low annual height and
diameter growth in the study area.

https://portalrediam.cica.es/descargas/
https://centrodedescargas.cnig.es/CentroDescargas/
https://earthengine.google.com/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://sentinels.copernicus.eu/web/sentinel/home
https://sentinels.copernicus.eu/web/sentinel/home
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2.6.2. Structural Complexity

Structural complexity of forest fuels was assessed by calculating the LiDAR Height
Diversity Index (LHDI) regarding vegetation distribution and vertical diversity. LHDI
is an index derived from the diversity index proposed by Shannon [44] and adapted by
Listopad et al. [30] for estimation of biodiversity in plant formations (Equation (1)):

LHDI = −∑[(ph)× ln(ph)] (1)

where ph is the proportion of returns in the height interval h with respect to the total number
of returns.

Following Domingo et al. [45], we used a cell size of 10 m and a height interval of
0.5 m. In order to apply the LHDI equation, it was necessary to calculate the value of the
product ph × ln(ph) in each of the tiles of the ALS point cloud, where ph is the value of each
of the pixels in each of the height intervals considered. This process was conducted using a
Python script and the ArcPy library of ArcGIS Pro [34] and ALS2020 data.

2.6.3. Fuel Moisture

Ful moisture was calculated using the index proposed by Chuvieco et al. [46], accord-
ing to which the moisture of living fuel is strongly correlated with surface temperature and
Normalized Difference Vegetation Index. This index was used based on the capacity of live
fuels to retain or lose moisture throughout the year by analysing an annual multitemporal
series image for a period between 2017 and 2021 (Section 2.5.3). The seasonal relative
moisture index of live fuel (IRH) is expressed by Equation (2):

IRH =
Ts

NDVI
(2)

where Ts is the surface temperature of the vegetation or bare soil and NDVI is the value of
the Normalized Difference Vegetation Index. NDVI and temperature and moisture indices
were automated using the Google Earth Engine, Landsat 8 OLI-TIRS, and Sentinel 2-A
catalogues. IRH was obtained for spring, and later summer. Annual drying index (IDA)
was subsequently calculated as the difference between both values, which resulted in a
raster dataset for each year. Finally, the fuel desiccation index (IDM) for the annual IDA
series was obtained. This methodology was proposed owing to the absence of field fuel
moisture data.

2.7. Potential Fire Behaviour Index

As a final part of the methodology, potential fire behaviour indices related to fuel
attributes were generated, along with a synthetic global index of potential fire behaviour at
a 10 m pixel scale throughout the study area:

• Potential Biomass Index (ICB): Fire danger associated with biomass load.
• Potential Structural Complexity Index (ICE): Fire danger associated with vegetation

structure.
• Potential Fuel Desiccation Index (ICD): Fire danger associated with fuel moisture.

Thresholds were defined for each index to establish a common categorisation consid-
ering the distribution of normalised variable values. The categories of potential behaviour
established were: (i) very low, (ii) low, (iii) moderate, (iv) high, and (v) very high.

The ICB, ICE, and ICD values were normalised, and a Potential Fire Behaviour Index
(ICP) was obtained. The Potential Behaviour Index (ICP) was calculated as the weighted
sum of the three partial indices (ICB, ICE, and ICD) (Equation (3)):

ICP = α × ICB + β × ICE + γ × ICD (3)

where ICP is the Potential Fire Behaviour Index, α is the weighting factor of the Poten-
tial Behaviour Biomass Index (ICB), β is the weighting factor of the Potential Behaviour
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Structural Complexity Index (ICE), and γ is the weighting factor of the Potential Behaviour
Fuel Desiccation Index (ICD). The values of α, β, and γ were estimated by considering the
relative weight that each of forest fuel variables have in fire behaviour, and the following
values were therefore assigned as: α = 0.5, β = 0.3, and γ = 0.2 based on INFOCA expert
assessment. ICP was mapped on a five-category scale, generating a fuel model map with
additional information about potential fire behaviour. The resulting map was simplified by
assigning an average value of the indices in each tile to the entire tile. The thresholds were
subsequently applied to obtain the thematic maps with the levels of potential behaviour
according to each index.

3. Results
3.1. Fuel Model Map

Figure 3 shows the map of Rothermel’s fuel models obtained from the SIOSE 2016
(Table 2). The dominant fuel model in the area was Model 4, corresponding mainly to
areas with the presence of Juniperus spp., following by Model 8, corresponding mainly to
Pinus halepensis stands in the NE sector. Models 1 and 5 had relatively large areas, which
corresponded mainly to grasslands located in the NW sector (Model 1) and to non-wooded
shrubs in the central sector of the study area (Model 5). The remaining models (11 to 13)
were not represented.

Figure 3. Rothermmel’s fuel models of forest types in Sierra de las Nieves National Park (Málaga,
southern Spain).
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Table 2. Rothermmel’s fuel models of forest types in Sierra de las Nieves National Park (Málaga,
southern Spain).

Fuel Model Surface (ha) Surface (%)

1 2666.56 9.02%
2 461.37 1.56%
3 1515.83 5.13%
4 9666.30 32.69%
5 3626.07 12.26%
6 678.68 2.29%
7 2045.09 6.92%
8 3898.83 13.18%
9 2048.79 6.93%
10 1946.13 6.58%

Not combustible 1020.05 3.45%

3.2. Biomass Load of Forest Fuels

A biomass–ALS calibration model was used for the different forest types (Figure 4;
see Supplementary Materials Table S2 for the selected metrics and model equations). The
biomass models performed well for Abies pinsapo (R2 = 0.69), Juniperus spp. (R2 = 0.70),
Pinus halepensis (R2 = 0.59), Pinus spp. mixed (R2 = 0.80), and Pinus spp.–Juniperus spp.
(R2 = 0.59) forests.

Figure 4. Biomass of forest types in Sierra de las Nieves National Park (Málaga, southern Spain).

The highest values of biomass were obtained for Pinus halepensis forests (190.43 Mg ha−1),
similar to other Pinus and evergreen Quercus forests (Table 2, Figure 4). However, the biomass
of Abies pinsapo was, in relative terms, lower (53.77 Mg ha−1) than other wooded formations.
Juniperus forests obtained intermediate values.
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3.3. Structural Complexity

LHDI successfully differentiated among forest types (Figure 5; Table 3). The highest
values of LHDI corresponded to Pinus spp.–evergreen (2.56), Q. suber (2.54), and Pinus
mixed (2.49) forests, with the minimum being obtained for Juniperus (1.37) and shrubs (1.11).

Figure 5. LiDAR Height Diversity Index (LHDI) of forest types in Sierra de las Nieves National Park
(Málaga, southern Spain).

Table 3. Biomass, LiDAR Height Diversity Index (LHDI), and Fuel Desiccation Index (IDM) of forest
types in Sierra de las Nieves National Park (Málaga, southern Spain). Mean ± standard deviation.

Forest Type Biomass (Mg ha−1) LHDI IDM

Abies pinsapo forests 53.64 ± 83.62 2.14 ± 0.95 −92.23 ± 193.02
Juniperus spp. forests. 100.57 ± 89.13 1.37 ± 0.78 −180.68 ± 221.74
Pinus halepensis forests 190.43 ± 101.20 2.35 ± 0.79 −107.34 ± 189.52
Pinus pinaster forests 142.56 ± 77.19 2.16 ± 0.64 −62.27 ± 903.86
Quercus ilex forests 169.26 ± 72.69 2.07 ± 0.53 −26.54 ± 101.29

Quercus suber forests 160.10 ± 63.49 2.54 ± 0.55 −52.11 ± 114.22
Abies pinsapo–Quercus spp. forests. 53.77 ± 90.24 1.95 ± 0.83 −52.12 ± 173.02

Evergreen mixed forests 183.01 ± 137.97 1.76 ± 0.84 −195.43 ± 312.19
Pinus spp. mixed forests. 107.44 ± 62.78 2.49 ± 0.60 −67.25 ± 110.43

Pinus spp.–Juniperus spp. forests. 115.35 ± 125.70 1.99 ± 0.65 −86.93 ± 83.83
Pinus spp.–evergreen forests 149.88 ± 140.66 2.56 ± 0.52 −20.31 ± 41.79

Pinus spp.–Quercus spp. forests. 126.42 ± 124.34 2.38 ± 0.74 −106.74 ± 202.72
Quercus spp. mixed forests. 131.87 ± 133.09 2.01 ± 1.16 −91.48 ± 182.52

Shrubs 0.22 ± 2.73 1.11 ± 0.82 −396.71 ± 429.36
Non-forests 0.00 ± 0.00 1.22 ± 1.03 −305.22 ± 3322.76

3.4. Fuel Desiccation Index (IDM)

The Fuel Desiccation Index (IDM), calculated as the temporal differences between a
seasonal relative moisture index of live fuel (IRH) for spring and summer of each year, is
showed in Figure 6. The minimum values of IDM were obtained for those areas dominated
by shrubs (−396.71), with a maximum value for Pinus spp.–evergreen forests (−20.31)
(Table 3).
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Figure 6. Fuel Desiccation Index (IDM) of forest types in Sierra de las Nieves National Park (Málaga,
southern Spain).

3.5. Potential Behaviour Indices

Biomass Index (ICB) values were high or very high for 11.86% of the area and low or
very low for 77.07%. Structural Complexity Index (ICE) values were higher than ICB values
and was high or very high for 37.23% of the area, and low or very low for 46.35%. Fuel
Desiccation Index (ICD) was the opposite to ICB and ICE, with high or very high values for
areas with a low biomass and a low structural complexity. The ICD value was high or very
high for 45.93% of the area and low or very low for 44.50% (Table 4).

Table 4. Surface (ha) and percentage (%) of Potential Behaviour Biomass Index (ICB), Potential
Behaviour Structural Complexity Index (ICE), Potential Behaviour Fuel Desiccation Index (ICD), and
Potential Fire Behaviour Index (ICP) of forest types in Sierra de las Nieves National Park (Málaga,
southern Spain).

Category ICB ICE ICD ICP

Very Low 16,423.47 (55.53) 8744.86 (29.57) 8799.01 (29.75) 9187.33 (31.07)
Low 6369.47 (21.54) 4962.54 (16.78) 4360.90 (14.75) 4403.60 (14.89)

Middle 3273.60 (11.07) 4858.32 (16.43) 2828.55 (9.56) 4671.34 (15.80)
High 1925.94 (6.51) 6262.84 (21.18) 1964.89 (6.64) 4364.81 (14.76)

Very high 1581.20 (5.35) 4745.12 (16.05) 11,620.33 (32.29) 6946.59 (23.49)

The ICP values were high or very high for 38.25% of the area, and low or very low
for 45.96%. High or very high values were related to Pinus halepensis forests located in the
north, Pinus pinaster forests located in the south, and mixed stands of Pinus pinaster and
Quercus suber located in the east (Figure 7).
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Figure 7. (a) Potential Behaviour Biomass Index (ICB), (b) Potential Behaviour Structural Complexity
Index (ICE), (c) Potential Behaviour Fuel Desiccation Index (ICD), and (d) Potential Fire Behaviour
Index (ICP) of forest types in Sierra de las Nieves National Park (Málaga, southern Spain).

4. Discussion

Traditional maps of forest fuel models are useful tools in so far as they suppose a
generalization of vegetation characteristics that allows their use in fire behaviour simulation
tools [47]. However, numerous studies continue to provide highly descriptive cartographs
that do not adequately represent the variation in forest fuels [48,49]. Although these maps
are produced by means of photointerpretation at a detailed scale, a bias is introduced when
assigning photo-interpreted covers to fuel models, especially in models under tree cover.
Furthermore, these maps generally provide information regarding only fire behaviour in
ground vegetation designed to simulate fire progression in conditions in which the forest
canopy does not ignite. Some simulators, such as WildFire Analyst [50], already allow the
integration of tree cover information, such as crown height, branches, or fuel load.

Remote sensing has been used for forest fuel mapping for more than two decades [6,17]
at a lower cost and with highly accurate mapping products. However, cartography of forest
fuel attributes that influence fire behaviour has many operational limitations [10]. These
attributes are particularly important when attempting to characterize fuels in a quantitative
and not only a qualitative manner, and for their use in fire behaviour models. It is, therefore,
increasingly necessary to have metrics related to fire behaviour, and not only categorical
forest fuel models using previous maps that were not necessarily developed for this purpose.
This work proposes a methodology to improve fire fuels attributes maps by integrating
field inventories, low density ALS, and satellite data in complex Mediterranean forests.
Our results comprise maps of three key fire fuels attributes (biomass, vertical structure,
and fuel moisture) that allow us to establish differences in potential fire behaviour. Thus,
this cartograph can have a double use: as input in forest fire simulation modelling and
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for rapid detection of areas of special interest for wildfire prevention and extinction. The
implications of these results depend on expectations about what forest fuel attribute maps
communicate to decision makers and the nature of the decisions these maps are intended
to inform.

4.1. Fuel Models and Biomass Load

The most frequently used fire fuel attributes are canopy height, structure (vertical and
horizontal), fuel moisture, and fuel load (biomass) [10]. The mapping of fuel attributes,
therefore, plays a larger role than simply determining fuel models [51,52]. Biomass is
needed to estimated forests fuel loads. Fuel models serve as conventional approaches
to biomass estimation, which, despite being a simpler approach, typically restrict spatial
and temporal projections. Advances in LiDAR-ALS technology, which provides detailed
information on vegetation structure, have made it possible to improve the estimation
of fuel biomass attributes [52–54]. Integration of ALS and allometric models allows a
better biomass estimation, which is essential to understand fuel load and its vertical and
horizontal continuity. In the study area, the aboveground biomass of tree covers ranged
from 190.43 Mg ha−1 (Pinus halepensis forests) to 53.77 Mg ha−1 (Abies pinsapo and Abies
pinsapo-Quercus spp. forests). Those values are similar to other studies of Mediterranean
forests [40,55,56]. ALS biomass models included metrics associated with height indicating
different levels of LiDAR penetration [55,57]. Additional variables related to canopy cover
and structure (standard deviation of the height distribution) were also included (Table S2).
Empirical models derived from height data were used to estimate biomass load (Table 2).
The selection of various height percentiles for various type of forests reflects the structural
differences that exist between them, as evidenced by return distribution [58,59]. Our
findings are consistent with previous research which found a strong correlation of biomass
fuel load with ALS height metrics.

4.2. Structural Complexity of Forest Fuels

Vegetation structural complexity has a great influence on fire severity [45]. The
presence of a continuous vertical layer of vegetation, formed as both a shrub layer and tree
cover (low dead branches, species with ramifications close to the ground, etc.) facilitates
fire transition from the surface to tree crown [29]. Depending on fire conditions, such as
topography or wind intensity, fuel vertical continuity can lead to an energetic behaviour
of the flame front, which prevents its extinction from land or air. A structural complexity
analysis approach based on ALS data allows the inclusion of vertical and horizontal fuel
structures, aspects that are very difficult to include when using approaches based on field
data [58]. This approach provides a better understanding of fire behaviour based on LiDAR
data analysis techniques with a high spatial resolution [59].

Vegetation structural complexity has been analysed in terms of diversity by Shan-
non [44], while Listopad et al. [30] transferred these equations to LiDAR data, assimilating
vertical vegetation distribution to the LiDAR cloud. Previous studies have shown the ability
of these LiDAR-derived indices to assess the structural characteristics of forests [28,60].
Here, we used the LiDAR Height Diversity Index (LHDI). This index expresses the level of
vegetation homogeneity in the vertical distribution of returns. Comparisons of the results
obtained in this study with similar data from other sites are limited because of the novelty
of the method. While recognizing the limitations of comparisons, it is noteworthy that
LHDI values obtained for complex Mediterranean forests were consistent with the expected
vegetation structure of forest types. The highest values of LHDI were obtained for Quercus
suber, mixed Pinus, and Pinus and broadleaved forests. However, differences between
forest types were not significant, only between forest and non-forest types dominated
by smaller species such as Juniperus. When applying LHDI to the Potential Behaviour
Structural Complexity Index (ICE), high or very high values were obtained for 37.23% of
the area. Once again, there was a correspondence between high and extremely high values
with Pinus halepensis and Pinus pinaster forests located in the northern and southern areas,
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although Quercus suber forests also obtained high ICE values. Low and very low values
covered 38.35% of the area, corresponding to low tree cover forests, which were, therefore,
those with less structural complexity. The LiDAR Height Diversity Index contributed to
the description of the vertical forest structure based on ALS in a practical way [57,61],
facilitating its generalization to large surfaces, and with levels of information similar to
much more complex systems.

4.3. Fuel Moisture

Fuel moisture, which is understood as the ratio between the total weight and the dry
weight of the vegetation in live and dead fractions, is another fuel attribute that influences
fire severity and behaviour [62]. The proportion of the front flame energy invested in
evaporation of fuel moisture determines the remaining energy available for combustion of
other volatiles and the solid vegetation fraction [59]. Fuel moisture is strongly correlated
with climate, such as temperature, relative moisture, or prevailing winds. However, there
are intrinsic vegetation factors that determine the ability of the vegetation to retain or lose
moisture [63], such as species composition (morphological, physiological, etc.), and factors
related to vegetation structure (fraction of area covered, age, etc.).

A fuel desiccation index was generated partially based on the workflow of Chu-
vieco et al. [46] and Romero Ramirez et al. [12]. The objective of the fuel desiccation index
(IDM) proposed in this study is to assess the fuel based on the relative differences between
forest types in terms of the ability to retain or lose moisture. IDM was sensitive to moisture
content of dead fuel, as could be observed from the results obtained for annual seasonal
moisture indices in areas dominated by grass. Fuel Desiccation Index (ICD) values were
high or very high in 45.93% of grass and scrub areas. This would appear to indicate a
correlation between ICD and the moisture content of dead fuels. On the contrary, 44.50%
of the area obtained low or very low ICD values, which were related to areas with higher
biomass and structural complexity values. These factors could contribute to changes in fuel
moisture, through radiation levels or exposure to drying winds. Estimating fuel moisture
is significantly complicated by vegetation spatial heterogeneity [20,64], which may be sim-
plified by aggregating species in dominant forest types. Finally, heterogeneous vegetation
type composition altered the temporal moisture response of vegetation. Using a temporal
image series based on the Google Earth Engine (GEE) platform simplified the operational
image data analysis [65].

4.4. Potential Forest Fire Behaviour Index

The understanding of fuel attributes and their relationship with fire behaviour is
needed [66]. In this study, a Potential Fire Behaviour Index (ICP) was proposed. A relative
weight of three fuel attributes (biomass, structural complexity, and fuel moisture) was
considered to assess potential fire behaviour. Biomass was considered to be the principal
fuel attribute (0.5), since it is the major factor in regard to determining energetic fire
behaviour. High or very high ICP values were obtained in 37.25% of the total area, when
compared to 44.96% for which the values were low or very low. The areas with the highest
ICP value corresponded to Pinus halepensis and Pinus pinaster forests, although high values
were also found for stands of Abies pinsapo forests. Our findings suggest that ICP can
provide reliable information about which landscape locations are most prone to fire due to
the vegetation strongly regulating fires in the Mediterranean area [67].

Based on well-established fuel model strategies, maps of fire fuel attributes provide a
means of comprehending differences in potential fire behaviour either through direct inter-
pretation of cartography or by incorporation into fire simulators. Important management
implications arise from the ability to differentiate stands based on their potential response to
fire initiation and spread. To map fuel hazards and prioritize locations where fuel reduction
or removal could be used to reduce risk, it is necessary to identify stands with particular fuel
attributes [64]. In the same direction, stands with complex fuel structures with hazardous
fuels can be assessed for large landscapes using key fuel attributes and low-cost data. The
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use of simple landscape fire fuel attributes maps has been sparse, possibly as a result of
a prevalent fire risk modelling paradigm that mandates probabilistic assessments of fire
likelihood. However, our map-based approaches using a numerical rating of potential for
fire transmission based on fuel biomass, structure, and moisture configuration simplified
the computationally complicated and data-intensive methods that are used to characterize
potential fire spread across landscapes. Complex probabilistic modelling efforts may yield
little insight into which locations can be expected to burn over the next few years either
due to a low fire incidence or the random nature of many of them in high-risk conditions
in which the likelihood of burning is low, such as boreal forests [68,69]. These highlight
the fact that probabilities are not appropriate for describing the risk of rare events with
potential catastrophic effects and recommend qualitative methods or possibilistic measures
in these situations. Therefore, the integration of field and remote sensing data allows the
development of maps for fire management and firefighting based on expert knowledge
and experience and fire behaviour modelling, through a rapid and updateable description
of fuel attributes, such as fuel load, canopy height, and vegetation flammability.

4.5. Limitations

Our study characterized forest fuel attributes in a region particularly suited to un-
ravelling the factors that modulate fire behaviour, due to the diversity of landscapes and
vegetation formations. Additionally, we leveraged a robust collection of remote sensing
data to quantify the components of forest fuel attributes. However, it is important to recog-
nize the inherent limitations of our study. First, this study lacks field data to validate our
results, due to the non-occurrence of forest fires in the study area. Nevertheless, there are
good conceptual and empirical arguments that support our conclusions about the factors
controlling the behaviour of forest fires and their quantification. Second, our forest fire
behaviour index ignores information about topographic conditions, such as slope or aspect,
which are known to influence fire behaviour. For a given fuel type, slope can be expected
to accelerate combustion and fire spread rates in comparison with flat terrain [70]. We
suspect that locations exposed to hazardous fuel will burn, irrespective of the contribution
of slope or other topographic variables towards combustion rates. and therefore, these
variables have a minimal influence on the fire behaviour index [70]. Third and perhaps
most fundamentally important, we assigned the three different weights described in the
estimation of the ICP based on the experience of INFOCA’s expert firefighting personnel.
This problem is partly related to the previously above-mentioned scarcity of field data.
However, we believe that the weights assigned for each of the three forest fuel attributes
produced results consistent with those obtained by other authors. For example, Age and
Skinner [71] showed that above-ground biomass (fuel load) is the most important contrib-
utor to fire behaviour. Furthermore, Rothermel [14] and Pimont et al. [72] found that in
addition to fuel load, the spatial continuity (structural complexity) and moisture of these
fuels strongly influences fire behaviour.

4.6. Applications

The resulting maps can offer cartographs to help wildland firefighters which do not
always (or almost never) have the capacity to generate “real time” simulations in prevention
and extinction actions. In determining whether or not to invest in a computationally and
time-intensive modelling exercise, prospective users of these maps should consider whether
or not a fire behaviour map with just three fuel attributes (load, structural complexity, and
moisture) is useful for informing their decisions [73]. Nevertheless, these maps should be
used with caution with consideration of their shortcomings and apparent limitations.

5. Conclusions

In this study, a new forest fire behaviour index based on fuel data using various
attributes including fuel load, moisture, and structural complexity was proposed. Remote
sensing was applied to improve fuel attribute characterisation and cartography, highlight-
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ing the utility of integrating multispectral and ALS data to estimate those attributes that are
more closely related to the spatial organisation of vegetation (for example, canopy height,
biomass, structural complexity, and moisture). The application of this methodology to the
mapping of forest fuel models makes it possible to obtain attributes at an adequate spatial
resolution by combining sensors that have already proved to be useful for the estimation of
forest fuels during the last decade (COPERNICUS Program) with field data and low-density
ALS data. The use of ALS data for forest fuel catheterization has become widespread in
the last decade due to cost reduction and improvement of data analysis. Since the indices
proposed are based on freely available remote sensing data, this method is transferable to
other territories and different spatial scales. Despite the numerous limitations of these fuel
data, pre-existing, coarse-scale fuel type data are insufficient for accurately assessing the
spatial variation in fire management. Even though most of the variables that are commonly
used to evaluate potential fire behaviour and fire likelihood at the landscape scale—such
as topography, weather, wind speed and direction, season, and fire regime characteristics
typically derived from historical data—were omitted from our fuel fire exposure metric,
it still offers practical applications for guiding fire management decisions like proactive
vegetation management and evacuation planning. The exposure metrics will need further
evaluation before it can be used in other ecosystems that differ from our study area, despite
the promising findings of our study.
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