68 research outputs found
Experimental and computational study of vehicle surface contamination on a generic bluff body
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon.
The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle. The aim is to investigate the fundamentals of contamination in a case where both flow field and contamination patterns can be measured, and also to provide validation of modelling techniques in a case where flow and spray conditions are known.
CFD results were obtained using both steady RANS and unsteady URANS solvers, combined with particle tracking methods. Steady RANS does not capture the wake structures accurately and this affects the contamination prediction. URANS is able to recover the large-scale wake unsteadiness seen in the experimental data, but the difference between the experimental and computational contamination distributions is still notable. The CFD is also able to provide further insight by showing the behaviour of particles of different sizes. Large particles are found to take on a ballistic trajectory and penetrate the wake. In contrast, small particles are shown to be less likely to become entrained into the wake
Experimental and Computational Study of Vehicle Surface Contamination on a Generic Bluff Body
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon.
The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle. The aim is to investigate the fundamentals of contamination in a case where both flow field and contamination patterns can be measured, and also to provide validation of modelling techniques in a case where flow and spray conditions are known.
CFD results were obtained using both steady RANS and unsteady URANS solvers, combined with particle tracking methods. Steady RANS does not capture the wake structures accurately and this affects the contamination prediction. URANS is able to recover the large-scale wake unsteadiness seen in the experimental data, but the difference between the experimental and computational contamination distributions is still notable. The CFD is also able to provide further insight by showing the behaviour of particles of different sizes. Large particles are found to take on a ballistic trajectory and penetrate the wake. In contrast, small particles are shown to be less likely to become entrained into the wake
Insulin signaling requires glucose to promote lipid anabolism in adipocytes
Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride–glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo. Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism
The TURis System for Transurethral Resection of the Prostate: A NICE Medical Technology Guidance
The transurethral resection in saline (TURis) system was notified by the company Olympus Medical to the National Institute of Health and Care Excellence’s (NICE’s) Medical Technologies Evaluation Programme. Following selection for medical technologies guidance, the company developed a submission of clinical and economic evidence for evaluation. TURis is a bipolar surgical system for treating men with lower urinary tract symptoms due to benign prostatic enlargement. The comparator is any monopolar transurethral resection of the prostate (mTURP) system. Cedar, a collaboration between Cardiff and Vale University Health Board, Cardiff University and Swansea University in the UK, acted as an External Assessment Centre (EAC) for NICE to independently critique the company’s submission of evidence. Eight randomised trials provided evidence for TURis, demonstrating efficacy equivalent to that of mTURP for improvement of symptoms. The company presented meta-analyses of key outcome measures, and the EAC made methodological modifications in response to the heterogeneity of the trial data. The EAC analysis found that TURis substantially reduced the relative risks of transurethral resection syndrome (relative risk 0.18 [95 % confidence interval 0.05–0.62]) and blood transfusion (relative risk 0.35 [95 % confidence interval 0.19–0.65]). The company provided a de novo economic model comparing TURis with mTURP. The EAC critiqued the model methodology and made modifications. This found TURis to be cost saving at £70.55 per case for existing Olympus customers and cost incurring at £19.80 per case for non-Olympus customers. When an additional scenario based on the only available data on readmission (due to any cause) from a single trial was modelled, the estimated cost saving per case was £375.02 for existing users of Olympus electrosurgery equipment and £284.66 per case when new Olympus equipment would need to be purchased. Meta-analysis of eight randomised trials showed that TURis is associated with a statistically significantly reduced risk of transurethral resection syndrome and a reduced need for blood transfusion—two factors that may drive cost saving for the National Health Service. The clinical data are equivocal as to whether TURis shortens the hospital stay. Limited data from a single study suggest that TURis may reduce the rate of readmission after surgery. The NICE guidance supports adoption of the TURis technology for performing transurethral resection of the prostate in men with lower urinary tract symptoms due to benign prostatic enlargemen
The High Latitude Ionospheric Response to the Major May 2024 Geomagnetic Storm: A Synoptic View
The high latitude ionospheric evolution of the May 10‐11, 2024, geomagnetic storm is investigated in terms of Total Electron Content and contextualized with Incoherent Scatter Radar and ionosonde observations. Substantial plasma lifting is observed within the initial Storm Enhanced Density plume with ionospheric peak heights increasing by 150–300 km, reaching levels of up to 630 km. Scintillation is observed within the cusp during the initial expansion phase of the storm, spreading across the auroral oval thereafter. Patch transport into the polar cap produces broad regions of scintillation that are rapidly cleared from the region after a strong Interplanetary Magnetic Field reversal at 2230UT. Strong heating and composition changes result in the complete absence of the F2‐layer on the eleventh, suffocating high latitude convection from dense plasma necessary for Tongue of Ionization and patch formation, ultimately resulting in a suppression of polar capscintillation on the eleventh
Pangolins in global camera trap data: Implications for ecological monitoring
Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (<0.05) for all species. Occupancy was associated with distance from rivers for M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts
Pangolins in Global Camera Trap Data: Implications for Ecological Monitoring
Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts
Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis
This paper presents the first multi-tissue study of diet in post-medieval London using both the stable light isotope analysis of carbon and nitrogen and analysis of microdebris in dental calculus. Dietary intake was explored over short and long timescales. Bulk bone collagen was analysed from humans from the Queen’s Chapel of the Savoy (QCS) (n = 66) and the St Barnabas/St Mary Abbots (SB) (n = 25). Incremental dentine analysis was performed on the second molar of individual QCS1123 to explore childhood dietary intake. Bulk hair samples (n = 4) were sampled from adults from QCS, and dental calculus was analysed from four other individuals using microscopy. In addition, bone collagen from a total of 46 animals from QCS (n = 11) and the additional site of Prescot Street (n = 35) was analysed, providing the first animal dietary baseline for post-medieval London. Overall, isotopic results suggest a largely C3-based terrestrial diet for both populations, with the exception of QCS1123 who exhibited values consistent with the consumption of C4 food sources throughout childhood and adulthood. The differences exhibited in δ15Ncoll across both populations likely reflect variations in diet due to social class and occupation, with individuals from SB likely representing wealthier individuals consuming larger quantities of animal and marine fish protein. Microdebris analysis results were limited but indicate the consumption of domestic cereals. This paper demonstrates the utility of a multidisciplinary approach to investigate diet across long and short timescales to further our understanding of variations in social status and mobility
- …