692 research outputs found

    Conductance as a Function of the Temperature in the Double Exchange Model

    Full text link
    We have used the Kubo formula to calculate the temperature dependence of the electrical conductance of the double exchange Hamiltonian. We average the conductance over an statistical ensemble of clusters, which are obtained by performing Monte Carlo simulations on the classical spin orientation of the double exchange Hamiltonian. We find that for electron concentrations bigger than 0.1, the system is metallic at all temperatures. In particular it is not observed any change in the temperature dependence of the resistivity near the magnetical critical temperature. The calculated resistivity near TcT_c is around ten times smaller than the experimental value. We conclude that the double exchange model is not able to explain the metal to insulator transition which experimentally occurs at temperatures near the magnetic critical temperature.Comment: 6 pages, 5 figures included in the tex

    Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals

    Full text link
    We report the measurement of infrared transmission of large C60 single crystals. The spectra exhibit a very rich structure with over 180 vibrational absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are observed to have become weakly IR-active. We also observe a large number of higher order combination modes. The temperature (77K - 300K) and pressure (0 - 25KBar) dependencies of these modes were measured and are presented. Careful analysis of the IR spectra in conjunction with Raman scattering data showing second order modes and neutron scattering data, allow the selection of the 46 vibrational modes C60. We are able to fit *all* of the first and second order data seen in the present IR spectra and the previously published Raman data (~300 lines total), using these 46 modes and their group theory allowed second order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon

    Sterols sense swelling in lipid bilayers

    Full text link
    In the mimetic membrane system of phosphatidylcholine bilayers, thickening (pre-critical behavior, anomalous swelling) of the bilayers is observed, in the vicinity of the main transition, which is non-linear with temperature. The sterols cholesterol and androsten are used as sensors in a time-resolved simultaneous small- and wide angle x-ray diffraction study to investigate the cause of the thickening. We observe precritical behavior in the pure lipid system, as well as with sterol concentrations less than 15%. To describe the precritical behavior we introduce a theory of precritical phenomena.The good temperature resolution of the data shows that a theory of the influence of fluctuations needs modification. The main cause of the critical behavior appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.

    Renormalization Group Approach to the Coulomb Pseudopotential for C_{60}

    Full text link
    A numerical renormalization group technique recently developed by one of us is used to analyse the Coulomb pseudopotential (μ{\mu^*}) in C60{{\rm C}_{60}} for a variety of bare potentials. We find a large reduction in μ{\mu^*} due to intraball screening alone, leading to an interesting non-monotonic dependence of μ{\mu^*} on the bare interaction strength. We find that μ{\mu^*} is positive for physically reasonable bare parameters, but small enough to make the electron-phonon coupling a viable mechanism for superconductivity in alkali-doped fullerides. We end with some open problems.Comment: 12 pages, latex, 7 figures available from [email protected]

    Neutron scattering search for static magnetism in oxygen ordered YBa2Cu3O6.5

    Full text link
    We present elastic and inelastic neutron scattering results on highly oxygen ordered YBa2Cu3O6.5 ortho-II. We find no evidence for the presence of ordered magnetic moments to a sensitivity of 0.003 Bohr magnetons, an order of magnitude smaller than has been suggested in theories of orbital or d-density-wave (DDW) currents. The absence of sharp elastic peaks, shows that the d-density-wave phase is not present, at least for the superconductor with the doping of 6.5 and the ordered ortho-II structure. We cannot exclude the possibility that a broad peak may exist with extremely short-range DDW correlations. For less ordered or more doped crystals it is possible that disorder may lead to static magnetism. We have also searched for the large normal state spin gap that is predicted to exist in an ordered DDW phase. Instead of a gap we find that the Q-correlated spin susceptibility persists to the lowest energies studied, 6 meV. Our results are compatible with the coexistence of superconductivity with orbital currents, but only if they are dynamic, and exclude a sharp phase transition to an ordered d-density-wave phase.Comment: 6 pages 4 figures RevTex Submitted to Phys Rev B January 23, 200

    Localization by disorder in the infrared conductivity of (Y,Pr)Ba2Cu3O7 films

    Full text link
    The ab-plane reflectivity of (Y{1-x}Prx)Ba2Cu3O7 thin films was measured in the 30-30000 cm-1 range for samples with x = 0 (Tc = 90 K), x = 0.4 (Tc = 35 K) and x = 0.5 (Tc = 19 K) as a function of temperature in the normal state. The effective charge density obtained from the integrated spectral weight decreases with increasing x. The variation is consistent with the higher dc resistivity for x = 0.4, but is one order of magnitude smaller than what would be expected for x = 0.5. In the latter sample, the conductivity is dominated at all temperatures by a large localization peak. Its magnitude increases as the temperature decreases. We relate this peak to the dc resistivity enhancement. A simple localization-by-disorder model accounts for the optical conductivity of the x = 0.5 sample.Comment: 7 pages with (4) figures include

    Optical Sum Rule in Finite Bands

    Full text link
    In a single finite electronic band the total optical spectral weight or optical sum carries information on the interactions involved between the charge carriers as well as on their band structure. It varies with temperature as well as with impurity scattering. The single band optical sum also bears some relationship to the charge carrier kinetic energy and, thus, can potentially provide useful information, particularly on its change as the charge carriers go from normal to superconducting state. Here we review the considerable advances that have recently been made in the context of high TcT_c oxides, both theoretical and experimental.Comment: Review article accepted for publication in J. Low Temp. Phys. 29 pages, 33 figure

    Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order

    Full text link
    We present spectral and optical properties of the Hubbard model on a two-dimensional square lattice using a generalization of dynamical mean-field theory to magnetic states in finite dimension. The self-energy includes the effect of spin fluctuations and screening of the Coulomb interaction due to particle-particle scattering. At half-filling the quasiparticles reduce the width of the Mott-Hubbard `gap' and have dispersions and spectral weights that agree remarkably well with quantum Monte Carlo and exact diagonalization calculations. Away from half-filling we consider incommensurate magnetic order with a varying local spin direction, and derive the photoemission and optical spectra. The incommensurate magnetic order leads to a pseudogap which opens at the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle states survive in the doped systems, but their dispersion is modified with the doping and a rigid band picture does not apply. Spectral weight in the optical conductivity is transferred to lower energies and the Drude weight increases linearly with increasing doping. We show that incommensurate magnetic order leads also to mid-gap states in the optical spectra and to decreased scattering rates in the transport processes, in qualitative agreement with the experimental observations in doped systems. The gradual disappearence of the spiral magnetic order and the vanishing pseudogap with increasing temperature is found to be responsible for the linear resistivity. We discuss the possible reasons why these results may only partially explain the features observed in the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
    corecore