178 research outputs found

    Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape

    Get PDF
    Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand-protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect due to the ligand. We assessed the method on three challenging proteins undergoing different extents of conformational changes upon ligand binding. In all cases our protocol generates a significant fraction of structures featuring a low RMSD from the experimental holo geometry. Moreover, ensemble docking calculations using those conformations yielded in all cases native-like poses among the top-ranked ones

    Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape

    Get PDF
    Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand–protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables ..

    Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial

    Get PDF
    We report the rational design of a heterochiral hydrophobic tripeptide self-assembling into amphiphilic D-superstructures that yield a self-supportive hydrogel at physiological pH. The material endures cell culture conditions and sustains fibroblast proliferation. Tripeptide superstructures are thoroughly analysed by several techniques

    A framework for dissecting affinities of multidrug efflux transporter AcrB to fluoroquinolones

    Get PDF
    Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps

    'I-I' and 'I-me' : Transposing Buber's interpersonal attitudes to the intrapersonal plane

    Get PDF
    Hermans' polyphonic model of the self proposes that dialogical relationships can be established between multiple I-positions1 (e.g., Hermans, 2001a). There have been few attempts, however, to explicitly characterize the forms that these intrapersonal relationships may take. Drawing on Buber's (1958) distinction between the 'I-Thou' and 'I-It' attitude, it is proposed that intrapersonal relationships can take one of two forms: an 'I-I' form, in which one I-position encounters and confirms another I-position in its uniqueness and wholeness; and an 'I-Me' form, in which one I-position experiences another I-position in a detached and objectifying way. This article argues that this I-Me form of intrapersonal relating is associated with psychological distress, and that this is so for a number of reasons: Most notably, because an individual who objectifies and subjugates certain I-position cannot reconnect with more central I-positions when dominance reversal (Hermans, 2001a) takes place. On this basis, it is suggested that a key role of the therapeutic process is to help clients become more able to experience moments of I-I intrapersonal encounter, and it is argued that this requires the therapist to confirm the client both as a whole and in terms of each of his or her different voices

    Chlorpromazine and amitriptyline are substrates and inhibitors of the acrb multidrug efflux pump

    Get PDF
    Efflux is an important mechanism in Gram-negative bacteria conferring multidrug resistance. Inhibition of efflux is an encouraging strategy to restore the antibacterial activity of antibiotics. Chlorpromazine and amitriptyline have been shown to behave as efflux inhibitors. However, their mode of action is poorly under-stood. Exposure of Salmonella enterica serovar Typhimurium and Escherichia coli to chlorpromazine selected for mutations within genes encoding RamR and MarR, regu-lators of the multidrug tripartite efflux pump AcrAB-TolC. Further experiments with S. Typhimurium containing AcrB D408A (a nonfunctional efflux pump) and chlor-promazine or amitriptyline resulted in the reversion of the mutant acrB allele to the wild type. Together, this suggests these drugs are AcrB efflux substrates. Subsequent docking studies with AcrB from S. Typhimurium and E. coli, followed by molecular dynamics simulations and free energy calculations showed that chlorpromazine and amitriptyline bind at the hydrophobic trap, a preferred binding site for substrates and inhibitors within the distal binding pocket of AcrB. Based on these simulations, we suggest that chlorpromazine and amitriptyline inhibit AcrB-mediated efflux by in-terfering with substrate binding. Our findings provide evidence that these drugs are substrates and inhibitors of AcrB, yielding molecular details of their mechanism of action and informing drug discovery of new efflux inhibitors. IMPORTANCE Efflux pumps of the resistance nodulation-cell division (RND) super-family are major contributors to multidrug resistance for most of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acineto-bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. The development of inhibitors of these pumps would be highly desirable; how-ever, several issues have thus far hindered all efforts at designing new efflux in-hibitory compounds devoid of adverse effects. An alternative route to de novo design relies on the use of marketed drugs, for which side effects on human health have been already assessed. In this work, we provide experimental evidence that the antipsychotic drugs chlorpromazine and amitriptyline are inhibi-tors of the AcrB transporter, the engine of the major RND efflux pumps in Escherichia coli and Salmonella enterica serovar Typhimurium. Furthermore, in silico calculations have provided a molecular-level picture of the inhibition mechanism, allowing rationalization of experimental data and paving the way for similar studies with other classes of marketed compounds

    Chirality Effects on Peptide Self-Assembly Unraveled from Molecules to Materials

    Get PDF
    Self-assembling short peptides are attractive minimal systems for mimicking the constituents of living systems and building (bio)materials. The combination of both D- and L-amino acids into heterochiral sequences is a versatile strategy for building durable supramolecular architectures, especially when their homochiral analogs do not self-assemble. The reasons for this divergent behavior have remained obscure until now. Here, we elucidate how and why homochiral and heterochiral peptides behave differently. We identify a key spectroscopy signature and its corresponding molecular conformation, whereby an amphiphilic structure is uniquely enabled by the peptide stereochemistry. Importantly, we unravel the self-assembly process as a continuum from the conformation of single molecules to their organization into nano- and microstructures and through to macroscopic hydrogels, which are probed for cytotoxicity in fibroblast cell culture. In this way, (bio)material properties at the macro-scale can be linked to the chemical structure of their building blocks at the angstrom scale. Nature makes pervasive use of homochirality (e.g., D-sugars and L-peptides) to assemble biomolecules, whose interactions determine life processes. D-amino acids rarely occur, and their effects are not yet completely understood. For a long time, structural complexity (e.g., polypeptides and constrained molecules) was considered a requirement for achieving defined conformations that ultimately allow biomolecule recognition and function. Here, we detail how minimalist building blocks can adopt conformations with a characteristic spectroscopic signature, whereby substitution of just one L-amino acid for its D mirror image leads to a divergent path for assembly in water. Subtle molecular variations are amplified through increasing size scale all the way to macroscopic differences that are visible to the eye. Ultimately, the design of heterochiral (bio)molecules thus provides an alternative approach to shed new light on the supramolecular interactions that define life as we know it. This work explains why and how heterochiral and homochiral tripeptides differ in their assembly in water. A characteristic spectroscopic signature is assigned to molecular conformation. We monitor the process as a continuum from the molecular scale to the macroscopic biomaterials so that the final properties are linked to chemical structure of the building blocks. This work lays the foundation for the design of supramolecular hydrogel biomaterials based on short sequences of hydrophobic D- and L-amino acids

    Cryo-EM structure and molecular dynamics analysis of the fluoroquinolone resistant mutant of the AcrB transporter from salmonella

    Get PDF
    Salmonella is an important genus of Gram-negative pathogens, treatment of which has become problematic due to increases in antimicrobial resistance. This is partly attributable to the overexpression of tripartite efflux pumps, particularly the constitutively expressed AcrAB-TolC. Despite its clinical importance, the structure of the Salmonella AcrB transporter remained unknown to-date, with much of our structural understanding coming from the Escherichia coli orthologue. Here, by taking advantage of the styrene maleic acid (SMA) technology to isolate membrane proteins with closely associated lipids, we report the very first experimental structure of Salmonella AcrB transporter. Furthermore, this novel structure provides additional insight into mechanisms of drug efflux as it bears the mutation (G288D), originating from a clinical isolate of Salmonella Typhimurium presenting an increased resistance to fluoroquinolones. Experimental data are complemented by state-of-the-art molecular dynamics (MD) simulations on both the wild type and G288D variant of Salmonella AcrB. Together, these reveal several important differences with respect to the E. coli protein, providing insights into the role of the G288D mutation in increasing drug efflux and extending our understanding of the mechanisms underlying antibiotic resistance
    • …
    corecore