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ABSTRACT: Understanding molecular recognition of small
molecules by proteins in atomistic detail is key for drug design.
Molecular docking is a widely used computational method to
mimic ligand−protein association in silico. However, predicting
conformational changes occurring in proteins upon ligand binding
is still a major challenge. Ensemble docking approaches address
this issue by considering a set of different conformations of the
protein obtained either experimentally or from computer
simulations, e.g., molecular dynamics. However, holo structures
prone to host (the correct) ligands are generally poorly sampled by
standard molecular dynamics simulations of the apo protein. In
order to address this limitation, we introduce a computational
approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that
allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a
set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect due to
the ligand. We assessed the method on three challenging proteins undergoing different extents of conformational changes upon
ligand binding. In all cases our protocol generates a significant fraction of structures featuring a low RMSD from the
experimental holo geometry. Moreover, ensemble docking calculations using those conformations yielded in all cases native-like
poses among the top-ranked ones.

■ INTRODUCTION

Proteins are involved in virtually all cellular tasks, mediating
physiological and pathological processes by establishing
specific interactions with other biomolecules and small
compounds. This feature is exploited in drug design by
engineering small molecules that can interfere with pathogenic
pathways. Modern drug design relies on a detailed under-
standing of molecular recognition processes by which bio-
logical partners such as a protein and a drug interact and bind
to each other.1−3 From a structural perspective, the rapid
increase in the number of experimentally determined protein
structures and the recent computational advances have fueled
the development of computer-aided strategies for drug
design.4−7 In particular, protein−ligand docking8−10 has
become a well-established computational tool to complement
experimental techniques such as X-ray crystallography, NMR
spectroscopy, cryogenic electron microscopy, and related
methods for characterizing protein−ligand complexes, often
reducing the costs and improving the efficiency of high-
throughput screenings.3 However, like any computational or

experimental technique, molecular docking also has its
limitations and pitfalls. Dealing with the partners’ flexibility is
still a challenge because of the various levels of conformational
changes that can occur in both the ligand and receptor upon
binding.1,3,11−17 In proteins these changes go from relatively
small side-chain rearrangements to local distortions involving
loops and/or confined secondary structure variations and even
large-scale motions among (sub)domains (e.g., hinge-bending
or shear motions).2,18,19 Several classes of pharmaceutically
relevant proteins such as kinases,20 transferases,21 synthases,22

and dehydrogenases23 undergo structural rearrangements
leading to compaction upon ligand binding.24,25

In order to improve in silico structure-based drug design, it
is crucial to account for these structural rearrangements
(particularly those occurring at the binding site) when
predicting drug binding and related thermodynamic and
kinetic properties.3,8,9,26 Several algorithms have been
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developed over the last decades to deal with protein flexibility
in docking.3,5,27,28 Among them, those termed soft docking,
side-chain flexibility, and molecular relaxation still consider
limited receptor flexibility either by allowing variations in the
volume/shape of the binding site through rescaling of atomic
interactions, by sampling a predetermined set of side-chain
orientations, or by inducing minor backbone/side-chain
rearrangements during structural optimization.1,9,12,17,27−29

Unfortunately, these methods often fail in predicting
protein−ligand complexes in the presence of medium to
large conformational changes of the receptor upon ligand
binding. Other approaches include those classified as collective
degrees of freedom and ensemble docking, the latter
constituting the background for our methodology.4,5,11,12,28,30

In a typical ensemble docking scenario, different conformations
of a protein target, either interacting with different substrates
or free of any ligand, are used to improve the prediction of the
correct structure of the complex of interest. The method is
founded on the conformational selection/population shift
theory of molecular recognition, which states that proteins are
able to assume drug-bound (hereafter “holo”)-like conforma-
tions even in the absence of interacting ligands.1,3,12,31 The
ligand thus recognizes its target by “selecting” the most
complementary conformation from an ensemble of metastable
states, causing a population shift toward holo-like states
(structures).
Ensemble docking has been shown to effectively enhance the

performances of docking and virtual screening.4,5,11,12,30

However, this improvement strongly depends on the ability
to include in the pool of receptor structures some
conformations similar to that of the true complex.1,12,29,32−34

In particular, the inclusion of experimental structures of
proteins bound to ligands similar to the one of interest has
been shown to significantly increase the accuracy of
docking.5,8,12,32,35 Unfortunately, the number of targets
whose three-dimensional (3D) structures have been exper-
imentally solved remains limited compared with the druggable
genome.4,36 Furthermore, the exploration of different con-

formations in experimental structures is generally limited and
biased toward (often just a few) known ligand−receptor
complexes, which impacts the chemical diversity of putative
lead compounds in virtual screening campaigns. Computa-
tional methods such as Monte Carlo (MC) and molecular
dynamics (MD) simulations offer a relatively cheap and
complementary way to sample receptor conforma-
tions.4,5,11,12,17,37−41 The augmented conformational diversity
sampled during MD simulations could in principle increase the
percentage of false positives in virtual screening efforts. This
issue is closely related to the limitations of current scoring
functions.3,8,9,13,42,43 Still, the significance of including MD-
derived structures for discovering new active compounds has
been demonstrated,44,45 e.g., by the discovery of new
(sub)pockets not yet identified by experiments.46−50 In fact,
it has been proposed that MD-derived structures could capture
key interaction spots on the surface of receptors that are less
biased toward one specific chemotype,45 potentially leading to
the discovery of previously unknown activities and/or
mechanisms of action (binding modes) of existing drugs.51

In the ensemble docking framework, Lin et al.52 introduced
the concept of the relaxed complex scheme (RCS), in which a
series of independent docking runs are performed from
receptor conformations of the unbound (hereafter “apo”)
protein generated by MD simulations. Those are usually
selected after clustering to capture the structural diversity of
the target while keeping the number of conformers computa-
tionally tractable. Clearly, because of time scale restrictions,
standard MD simulations are often unable to sample
conformational states relevant to molecular recognition.39,53

Several techniques have been proposed to enhance the
sampling of rare conformations, including accelerated MD,54

replica exchange in temperature and energy spaces,55,56 and
metadynamics,57 which generalizes methods such as conforma-
tional flooding58 and local elevation.59 Several groups have
demonstrated the effectiveness of these methods in improving
the performance of docking and virtual screening.60−67

Figure 1. Comparison of the structural changes undergone by (a, d) BGT, (b, e) RIC, and (c, f) ABP upon binding of their ligands UDP, NEO,
and ALL, respectively. (a−c) Overall conformational rearrangements of the proteins. The apo and holo proteins (PDB IDs 1JEJ and 1JG6, 1RTC
and 1BR5, and 1GUD and 1RPJ for the BGT and BGT−UDP, RIC and RIC−NEO, and ABP and ABP−ALL systems, respectively) are shown in
green and yellow ribbons, respectively, with the ligands in sticks colored by atom type. (d−f) Detailed views of the local rearrangements occurring
at the binding site. The conformations of residues lining the binding site in the apo and holo forms of the proteins are shown with thin green and
thick yellow sticks, respectively, while the ligands are shown with thin black sticks and the protein is shown in transparent gray ribbons. The most
significant reorientations upon ligand binding are indicated by magenta arrows.
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To the best of our knowledge, no single method has yet
been developed that outperforms standard ensemble docking
on targets undergoing different kinds of structural distortions
upon binding, unless some experimental knowledge of these
conformational changes is exploited. In order to address this
issue, we propose here a new approach called ensemble
docking with enhanced sampling of pocket shape (EDES) that
exploits relatively short metadynamics simulations of the apo
protein of interest to generate a set of holo-like conformations
for ensemble docking.57,68,69 The key ingredients of our
method are (i) the use of a novel set of collective variables to
sample optimally and in a controlled manner different shapes
of the binding site and (ii) a multistep clustering strategy
allowing a large fraction of holo-like structures to be retained
within the pool of cluster representatives. Notably, EDES does
not exploit any a priori information about the holo structure of
the protein. We assess the method on three targets that are
representative of minor to very large conformational rearrange-
ments upon ligand binding (Figures 1 and S1).
The first target is the T4 phage β-glucosyltransferase

(hereafter BGT),70 which undergoes a hinge-bending motion
leading to a more closed form in its complex with uridine
diphosphate (UDP) compared with the ligand-free structure
(Figure 1a,d). This protein was included in the set of 10 targets
selected by Seeliger and de Groot66 to assess their workflow
based on enhanced sampling using tCONCOORD71,72 with
the radius of gyration of the holo structure as a bias. While
close-to-native ligand binding poses were obtained for eight
out of 10 cases within the 100 top-ranked complex models, this
was not the case for BGT, which makes this protein a well-
suited test case for our method.
The second target is recombinant ricin (hereafter RIC),73

representative of proteins undergoing minor but subtle
conformational changes upon binding of the ligand (in this
case neopterin, NEO)74 (Figure 1b,e). RIC belongs to the
Astex Diverse Data Set,75 recently used to validate the
AutoDockFR docking software, which models receptor
flexibility by explicitly specifying a set of flexible side chains.76

In cross-docking experiments using the apo conformations of
the receptors, AutoDockFR outperformed AutoDock Vina77 in
terms of both number of correct poses and their ranking.
However, none of the aforementioned software was able to

find any solution within a ligand root-mean-square deviation
(RMSD) of 2.5 Å from the experimental structure of the
complex.
The third target is the allose binding protein (ABP) (Figure

1c,f), which is also representative of targets undergoing hinge-
bending motions upon binding of their ligands, in this case D-
allose (ALL).78 The conformational changes for ABP are larger
than those occurring in BGT. This protein therefore represents
another good test case for our approach. Motta and Bonati63

used ABP−ALL in ensemble docking calculations performed
with Glide79,80 from conformations generated through
accelerated MD simulations.54

In the following we demonstrate that for all of the targets
considered here, EDES is able to generate native-like structures
of the complexes. Using the widespread and freely available
docking programs HADDOCK81 and AutoDock4,82 which
differ in their search and scoring strategies, we identify native-
like docking poses among the top-ranked ones. While being a
proof of concept, this work opens the way to the automatic
generation of holo-like conformations for a broad range of
protein targets and as such contributes to improving in silico
structure-based drug design.

■ RESULTS AND DISCUSSION

Method Workflow. Our protocol workflow is sketched in
Figure 2a. First, we identify the putative binding sites on the
target proteins. For the purpose of validating our methodology,
these sites were defined from the structures of the BGT−UDP,
RIC−NEO, and ABP−ALL bound complexes (see Figure S1g
for the list of protein residues defining these sites). In real
cases, binding sites could be identified using publicly available
site detection packages or Web servers. For example, for the
targets investigated here, there is a good agreement between
the experimental binding sites and those identified by the
COACH-D Web server (vide infra).83 We then calculate the
“inertia planes” at the binding site, that is, the planes
orthogonal to the corresponding inertia axes and passing
through the center of mass of the site (Figure 2b). Then we
perform relatively short bias-exchange, well-tempered metady-
namics simulations57,68,69 of the apo protein (see Materials and
Methods for details) using a set of four collective variables
(CVs): three (pseudo)contacts across inertia plane (CIP)

Figure 2. Overview of the EDES approach. (a) Workflow of the EDES protocol. (b) Representation of the “inertia planes” (transparent blue, red,
and green) calculated at the binding site. The α-carbons of residues lining this site are shown as yellow spheres, and the protein is shown in gray
ribbon. (c) Schematic view of the two groups of atoms (orange and green sticks with α-carbons as spheres) considered for the calculation of the
number of contacts across one inertia plane; the ligand is also shown in black sticks. (d) Scheme of the “window” approach implemented to
enhance in a controlled manner the sampling of conformations associated with different radius of gyration values of the binding site (RoGBS) (the
plot refers to simulations of the BGT system). The RoGBS values corresponding to the initial conformation for each window are indicated by a
square (w1), diamond (w2), triangle (w3), and circle (w4). The RoGBS of the apo and holo experimental structures are indicated by horizontal lines.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00730
J. Chem. Inf. Model. 2019, 59, 1515−1528

1517

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00730/suppl_file/ci8b00730_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00730/suppl_file/ci8b00730_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.8b00730


variables, each defined as the number of contacts between
residues of the binding site on opposite sides of the
corresponding inertia plane (Figure 2c), and the gyration
radius of the binding site (RoGBS). We also use the last of
these CVs to implement a “windows” approach (Figure 2d)
aimed at sampling more effectively and in a controlled manner
different shapes of the binding site (possibly mimicking
conformational changes induced by ligand binding). Namely,
we apply soft walls at RoGBS values that are 7.5% higher and
lower than the value measured in the apo X-ray structure
(RoGX‑ray

apo , corresponding to the center of window 1). Next,
from the trajectory of this first window, we randomly select a

conformation of the protein whose RoGBS is 5% lower to
initiate another MD simulation (corresponding to window 2)
with walls centered at ±7.5% RoGX‑ray

apo from this new center.
We repeat this procedure to generate up to four windows
including the first one. This leads to an overall reduction of
RoGBS of 15% relative to the center of the first window
RoGX‑ray

apo (see Figure 3 and Table S1). Despite the arbitrariness
of our choice, the performance of EDES is not very sensitive to
the exact choice of three or four windows (and thus to the
exact extent of the collapse induced at the binding site,
amounting to 10% or 15% of the initial value, respectively).
Moreover, although the imposed ΔRoGBS correspond only to

Figure 3. Distributions of RoGBS values. (a−c) Distributions from each EDES window for (a) BGT, (b) RIC, and (c) ABP. The colored bar below
each distribution indicates the position of the lower and upper walls set for RoGBS in that window, and the color gradient indicates a higher force
constant for the upper wall than the lower wall (the centers of the windows are indicated by darker lines within the bars and are connected by a
black dashed line). (d−f) Comparison of RoGBS normalized distributions (area under each curve equal to 1, bin size set to 0.1 Å) obtained from the
different simulations performed in this work.

Figure 4. Normalized distributions (area under each curve equal to 1, bin size set to 0.1 Å) of the RMSD of the binding site heavy atoms
(RMSDBS) with respect to the holo structure. The upper (a−c) and lower (d−f) rows show the distributions calculated over all of the snapshots
extracted from each MD simulation and over cluster representatives only, respectively. The faint dotted lines in (d−f) correspond to the
distributions in (a−c).
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the true change seen for BGT (Figure S1g), EDES performed
comparably well for all of the systems investigated here. In the
following we refer to the cumulatives set of three- and four-
window simulations as EDES3w and EDES4w, respectively.
Sampling of Holo-like Structures. We first discuss the

performance of our method in generating holo-like structures,
starting with BGT. The binding of UDP induces large
rearrangements at the binding site of this protein, particularly
in the orientation of the three arginines (R191, R195, and
R269) neutralizing the negative charge of the diphosphate
group (Figure 1a,d). We first compared the performance of
standard MD simulations of the apo (MDapo) and holo
(MDholo) systems to that of EDES (simulation details are
reported in Materials and Methods) using as a metric the
RMSD of the binding site heavy atoms (RMSDBS) from the
geometry assumed in the holo structure. Figure 4 reveals a very
poor overlap between the MDapo and MDholo distributions. The
EDES distributions are centered somewhat in between the
ones obtained from the unbiased MD simulations. In addition,
most conformations sampled by EDES have RMSDBS lower
than 2.8 Å from the experimental structure of the complex (in
between the values for the apo and holo structures; see Figure
S1g). The EDES distributions reveal a shoulder at lower
RMSDs that increases the percentage of conformations with
RMSDBS < 2 Å compared with MDapo, a feature that persists
after clustering (Figure 4).
Table 1 reports the percentages of structures with low

RMSDBS from the holo structure. As expected, this percentage

is high for MDholo. While a very low number of such
conformations was sampled in MDapo, a large fraction was
obtained by EDES using either three or four windows.
Our protocol was thus able to generate collapsed

conformations of the binding site in the absence of a ligand
triggering such a collapse (Figure 3 and Figure S2). This is
particularly evident for R269 in the center of the binding
pocket: while in MDapo the side chain remains in the center of
the binding site, it is displaced in the EDES simulations,
making room for ligand binding (Figure 5). Our multistep
cluster analysis effectively increased the percentage of
structures featuring a native-like geometry of the binding site
compared with the fraction sampled during MD simulations
(Table 1). The enhanced sampling of holo-like conformations
by EDES is also evident from the CIP metric, as shown by the
improved overlap between the MDholo and EDES distributions
with respect to MDapo (Figure 6). In particular, only EDES
samples conformations with CIP values virtually identical to
those of the experimental holo structure (black sphere in
Figure 6). As our methodology relies on the accurate
identification of the binding site(s) to enhance the conforma-
tional sampling of its shape and volume, we also investigated
its performance using a slightly different definition of the
binding site. Namely, we took advantage of one of the many
available site-finding Web servers, COACH-D,83 to determine
consensus binding sites on BGT. Among the top sites
identified by COACH-D, the top one shares 13 out of 16
residues with the experimental holo structure (Table S2).

Table 1. Performance of Various MD Simulations in Reproducing Native-like Conformations of the Binding Sites of BGT,
RIC, and ABPa

RMSDBS < 1.5 Å [%] RMSDBS < 2 Å [%]

protein simulation trajectory clusters trajectory clusters

BGT MDapo − − 0.06 (1.69) −
MDholo 23.9 (0.75) 26.6 (0.75) 85.3 (0.75) 84.8 (0.75)
EDES4w 0.02 (1.31) 0.2 (1.31) 5.0 (1.31) 8.4 (1.31)
EDES3w 0.02 (1.31) 0.4 (1.31) 3.8 (1.31) 4.0 (1.31)

RIC MDapo 9.7 (1.00) 9.6 (1.10) 89.4 (1.00) 93.2 (1.10)
MDholo 13.0 (0.91) 12.4 (0.95) 99.6 (0.91) 97.8 (0.95)
EDES4w 13.0 (0.77) 19.0 (0.81) 81.4 (0.77) 82.4 (0.81)
EDES3w 16.5 (0.77) 17.6 (0.81) 85.5 (0.77) 85.4 (0.81)

ABP MDapo − − − −
MDholo 25.8 (0.48) 25.6 (0.67) 96.4 (0.48) 88.6 (0.67)
EDES4w 0.6 (1.17) 1.4 (1.20) 8.6 (1.17) 9.4 (1.20)
EDES3w 0.5 (1.17) 2.4 (1.20) 6.1 (1.17) 8.4 (1.20)

aPerformance is measured by the percentage of conformations with RSMDBS < 1.5 or 2 Å with respect to the experimental structure. The headings
“trajectory” and “clusters” refer to snapshots extracted from the full trajectories and to cluster representatives, respectively. The lowest value of
RMSDBS (in Å) is reported in parentheses.

Figure 5. Binding site views of the lowest-RMSD conformations of BGT with respect to the bound complex extracted from (a) MDapo, (b)
EDES4w, and (c) EDES3w. UDP is shown in gray lines and transparent surface. The proteins are shown as gray (holo experimental structure), red
(MDapo), dark green (EDES4w), and blue (EDES3w) thin ribbons, with side chains of residues lining the binding site represented as sticks, which are
thicker for R269.
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Furthermore, the overlap between the experimentally derived
sites and those identified by COACH-D is very high for all
three targets. We repeated all of the EDES simulations using
the alternative definition of the binding site obtained from
COACH-D. This gave virtually identical results (Table S3),
indicating that our method is not sensitive to the exact binding
site definition and can be used in conjunction with site
detection algorithms in cases where only an apo structure is
known.
Despite being primarily devised for targets undergoing

rather large conformational changes, we decided to test our
method also with RIC as paradigm of a protein that undergoes
minor conformational changes upon ligand binding. This is
important because in several interesting applications the
information regarding the extent of apo-to-holo conforma-
tional rearrangement(s) it is unknown. It is therefore
important to validate our method on proteins that undergo
only limited conformational changes upon binding. Further-
more, previous work has already pointed out how the
performance of enhanced-sampling versus standard MD

simulations in reproducing a relevant fraction of holo-like
conformations is target-dependent.63

The subtle conformational changes of RIC upon binding of
NEO (Figure 1b,e) were hardly handled by algorithms
exploiting the flexibility of the binding site through side-
chain torsional angles.76 RIC has proven to be a very difficult
target for both rigid and flexible docking calculations starting
from the apo X-ray structures using both AutoDock Vina77 and
the recently introduced AutoDockFR76 software (see Table 1
in ref 76). In contrast, both metadynamics and standard MD
simulations were able to reproduce the geometry assumed by
the binding site in the holo structure (although EDES did find
conformations closer to the holo structure than those obtained
from MDapo/holo; see Table 1 and Figure 4). As expected, no
clear difference was observed between EDES and standard MD
in reproducing holo-like conformations of the entire protein
(Figure S3), as both approaches sampled a relatively large
fraction of such structures. On the basis of these results, we are
confident that our approach should also be able to effectively
generate holo-like structures of targets undergoing minor
conformational changes upon ligand binding. As stated above,
this is particularly encouraging since in a real case one might
not know the extent of the conformational change in advance.
The last protein considered in this work is ABP (Figure

1c,f), which undergoes the largest conformational changes
among the three targets upon binding of the neutral small
molecule ALL. The difference between the performances of
metadynamics and standard MD simulations in reproducing
holo-like geometries of the binding site becomes evident in this
case (Figures 3 and 4), as the latter approach is unable to
produce any single conformation of the protein featuring an
RMSDBS lower than 2 Å from the holo X-ray structure (Table
1). In contrast, our approach, despite enhancing the sampling
of the binding site only, is able to drag the whole protein
structure toward conformations close to that found in the
protein−ligand complex also for this target (Figure S3).

Docking Performance. In this subsection we describe the
performance of each set of structural clusters in ensemble
docking calculations. The results presented for AutoDock4
were obtained after performing a cluster analysis on the top
poses obtained from individual docking runs (500 for each
ensemble of structures), while in HADDOCK all of the 500
conformations within each ensemble were used in a single
docking run (see the captions of Tables 2 and 3 and Materials
and Methods for details).

Figure 6. Sampling of the 3D space defined by CIP1, CIP2, and CIP3
during the MD simulations of BGT and BGT−UDP. Top row:
Comparison of the MDapo (red), EDES3w (blue), and EDES4w (green)
distributions with the MDholo distribution (dark gray). The
distributions are shown both as solid points and as transparent
surfaces. The locations of the apo and holo structures are indicated by
red and black spheres, respectively. Bottom row: Envelopes of the
MDapo (red), EDES3w (blue), and EDES4w (green) distributions
overlapping with the MDholo distribution (shown in dark gray as a
reference). Also reported are the volumes of the overlapping
distribution, Vov (estimated with Voss Volume Voxelator (http://
3vee.molmovdb.org) using a probe radius of 3 Å).

Table 2. Performance of AutoDock4 in Reproducing the Experimental Structures of the BGT−UDP, RIC−NEO, and ABP−
ALL Complexes in Ensemble Docking Calculationsa

BGT−UDP RIC−NEO ABP−ALL

MDapo MDholo EDES3w EDES4w MDapo MDholo EDES3w EDES4w MDapo MDholo EDES3w EDES4w

sampl. perf. [%] − 84.6 1.8 2.0 3.8 10.8 2.6 3.4 − 94.0 3.0 3.2

pose rank − 1 (1) 1 (1) 2 (2) 1 (1) 1 (1) 4 (3) 1 (1) − 1 (1) 2 (2) 2 (7)

clus. pop. − 48 4 4 15 20 10 13 − 225 9 5 (6)

RMSDlig [Å] − 1.2 (0.7) 0.6 (0.9) 1.5 (1.2) 1.0 (0.9) 0.6 (0.6) 0.7 (0.7) 0.9 (0.8) − 0.7 (0.2) 0.8 (0.3) 0.7 (0.2)

aResults refer to clusters of docking poses obtained from a cluster analysis performed on all generated complexes (500 for each ensemble of clusters
of receptor structures, corresponding to the top pose from each independent docking run for that ensemble) using as the metric the distance
RMSD (dRMSD) with a cutoff of 1.5 Å. The sampling performance is calculated as the percentage of poses within 2 Å from the native structure out
of the top poses considered for each ensemble of receptor structures. The pose rank refers to the ranking of the first native-like pose obtained using
the highest score within each cluster as sorting criterion. In parentheses, the rank of the same cluster is reported when the average score over the
top three poses is used instead. The cluster population refers to the population of the corresponding cluster in the same column. The RMSDlig
refers to the average heavy-atom RMSD of the ligand calculated for the top cluster with the standard deviation in parentheses.
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For BGT−UDP, both AutoDock4 and HADDOCK
achieved improved sampling performance (defined as the
percentage of docking poses displaying a value of RMSDlig
lower than 2 Å from the holo structure) when coupled to
EDES rather than MDapo (Tables 2 and 3), generating
consistent fractions (up to 2% and 14% for AutoDock4 and
HADDOCK, respectively) of native-like ligand poses. This is
much better than using clusters derived from the much longer
MDapo simulation (0% for AutoDock4 or 2% for HADDOCK).
Importantly, both programs were able to rank at least one

native-like pose among the top two when coupled with EDES,
independent of the number of windows used to generate the
conformational clusters (see Tables 2 and 3 and Figure 7).
The results obtained for ABP are also very encouraging. In

this case the performance of HADDOCK is overall better with
EDES3w. The top HADDOCK pose obtained with EDES4w,
while satisfying the RMSDlig ≤ 2 Å criterion, has a flipped
orientation (pointing to the known limitation of using the
RMSD criterion alone to evaluate the performance of
docking). The 10th cluster instead virtually overlaps with the
experimental one (RMSDlig = 0.9 ± 0.1 Å).
It should be noted that for BGT and RIC the results were

virtually independent of the number of EDES windows used.
Clearly, further studies will be needed to optimize the number
and the width of the windows used, possibly exploiting a set of
intrinsic properties of each protein so as to set up target-
dependent rules.

Druggability Assessment. We used the software f-
pocket84 to assess the druggability of the binding site within
the ensembles of conformations generated by EDES (see
Materials and Methods). For each conformation, we evaluated
the druggability score D,85 which ranges between 0 and 1 with
higher values identifying more druggable geometries. It is
customary to associate scores >0.5 to putative binding sites.85

Table 4 shows that EDES generated a much larger set of
druggable structures than MDapo for BGT and ABP (actually,
no druggable conformation was generated from this trajectory
for the latter system), while the performance of the two sets
was similar for RIC, as expected. In particular, (i) the EDES-
derived ensembles have a higher percentage of structures
associated with D > 0.5 than those derived from MDapo, and
(ii) the percentage of structures with D > 0.9 is not much
lower than that obtained from the MDholo set for BGT and
RIC.

Impact of the Clustering Strategy. As highlighted by
others, no enhanced sampling algorithm would be useful in
ensemble docking calculations without an effective clustering
strategy to limit the number of conformations for docking
while selecting druggable/holo-like structures.11,32,63,65,86 This
is of particular relevance in virtual screening experiments,
where the optimal choice of the number of structures building
the ensemble is crucial. To assess the sensitivity of our protocol
to the number of selected clusters for docking, we performed
additional cluster analysis in which we decreased the total
number of clusters from 500 to 200 or 100. Using the resulting
sets of conformations, we performed additional docking
calculations with AutoDock4. The results reveal that (i) the
fraction of conformations displaying RMSDBS ≤ 2 Å is virtually
constant when going from 500 to 100 clusters (Table S4) and
(ii) the docking performance is also comparable when different
numbers of starting conformations are used (Table S5).
Another relevant aspect is the metric used for clustering.

Indeed, it has been shown that strategies based on a 3DT
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descriptor linked to the pocket shape appear to be more
effective in delivering maximally different conformations of the
binding site.63,65 Using BGT−UDP we compared the
conformational sampling and the docking performance
(evaluated with AutoDock4) of our multistep multidimen-
sional clustering of the CVs used in metadynamics simulations
(CACVs) with that of a more standard analysis based on the
distance RMSD (dRMSD) of the binding site (CAdRMSD). We
found that the performance of our approach is superior in
terms of both sampling holo-like conformations and selecting
low RMSDBS values compared with CAdRMSD (Table S6). The
impact of the clustering strategy is even more evident for the

docking results with no near-native pose within the top 10
when using structures obtained from CAdRMSD clustering
(Table S7).

Comparison with Previous Work on the Same
Targets. Seeliger and de Groot66 used tCONCOORD71,72

with a radius of gyration bias to enhance the sampling of holo
receptor conformations on a set of 10 proteins including BGT.
In nine out of 10 cases, the best models displayed an RMSD
from the holo structure smaller than 2 Å at the binding site
(defined as all residues within 6 Å from the ligand). The best
model had an RMSDBS of 1.78 Å, which is higher than the
lowest values obtained with our protocol (using the same
definition of the binding site as in ref 66), namely, 1.51 and
1.40 Å for the clusters and the MD-derived distributions in
both EDES4w and EDES3w. They performed ensemble docking
calculations with AutoDock Vina77 using 5000 protein
structures generated by tCONCOORD followed by a series
of postdocking optimizations, filtering of models against the
experimental gyration radius, further docking calculations, and
finally rescoring with RosettaLigand.87 As a result, in eight out
of 10 cases, native-like ligand poses (defined there as those for
which RMSDlig < 3 Å from the experimental structure) were
generated among the top 100 ones, demonstrating the general
applicability of the method for blind predictions of protein−
ligand complexes involving large conformational rearrange-
ments. However, no native-like pose was found within the top
100 for BGT, and just one pose had RMSDlig < 2 Å.
In order to understand more deeply the reasons behind the

good performance of our method for BGT, we calculated the
correlation between RMSDlig and the RMSDs of the residues
within the binding site, including the arginine triad (R191,
R195, and R269) and in particular R269, which in the MDapo
simulation often occupies the center of the pocket (Figure 5).

Figure 7. Docking performances of various structural ensembles in reproducing the experimental poses of BGT−UDP (top row), RIC−NEO
(middle row), and ABP−ALL (bottom row). Close views of the experimental binding modes are shown in the first column, while the top-score
poses within the first cluster with RMSDlig < 2 Å, or poses with the lowest RMSDlig value when no native-like pose was found, are reported in the
next columns, with the corresponding ranks given in square brackets. The docking was performed both using AutoDock4 and HADDOCK for
comparison. In each panel, the molecular surface of the backbone and that of the Cα atoms of the protein are colored by residue type as in Figure 1,
and the ligand is shown as sticks colored by atom type. In columns 2 to 7, the experimental pose is shown in black thin sticks for easy comparison.

Table 4. Performance of Various MD Simulations in
Generating Druggable Conformations of the Binding Sitea

% of cluster structures with D greater than:

protein simulation 0.5 0.6 0.7 0.8 0.9

BGT MDapo 8.8 4.8 3.2 1.6 0.4
MDholo 40.0 28.6 18.0 10.6 2.4
EDES4w 14.2 10.8 7.2 3.6 1.8
EDES3w 15.8 10.2 6.8 4.6 1.4

RIC MDapo 2.6 2.2 1.2 0.4 0.2
MDholo 14.2 8.8 6.0 2.4 0.4
EDES4w 3.4 2.6 1.8 0.4 0.2
EDES3w 3.2 2.4 1.6 0.4 0.2

ABP MDapo − − − − −
MDholo 20.4 13.0 7.2 3.6 1.6
EDES4w 7.4 5.4 2.6 1.2 0.2
EDES3w 7.6 5.2 3.0 1.8 0.4

aFor each protein and each simulation, the percentages of structures
(over the 500 cluster representatives) featuring druggability scores D
larger than 0.5 to 0.9 are reported in columns 3 to 7, respectively.
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Despite the fact that the overall correlation between RMSDUDP
and the RMSD of the binding site is not necessarily high,
reproducing the correct orientation of the arginine triad and in
particular R269 is crucial to obtain native-like poses (Figure
S4). These results are in line with previous reports (see, e.g.,
the discussion in ref 63) pointing to the importance of
reproducing, in the near-native backbone geometry, the correct
orientation of the few side chains involved in key interactions
with ligands rather than fairly matching the overall binding site
structure. By enhancing the fluctuations in the number of
contacts among two relatively small groups of atoms across
three orthogonal planes (see, e.g., Figures 6 and S2), our
method effectively forces the binding site to assume different
volumes and shapes, thus increasing the probability of
sampling native-like conformations. This should be particularly
effective when dealing with long/charged side chains lining the
binding site (such as R269) within an aqueous environment
that favors an extended conformation because of enhanced
hydration.
For RIC, as previously discussed in ref 76, neither AutoDock

Vina nor AutoDockFR was able to find native-like poses. RIC
proved to be a very difficult target for both rigid and flexible
docking (see Table 1 in ref 76). In contrast, our protocol
reproduced a high fraction of holo-like structures, which is not
trivial, as recently discussed in ref 63, where the advantage of
using an enhanced sampling protocol (i.e., accelerated MD54)
versus conventional MD simulations was reported to depend
on the target, in particular on the extent of conformational
changes at the binding site, and on the binding specificity. Our
findings for RIC are thus very encouraging considering the
difference of only 0.1 Å between the RoGBS of the apo and
holo experimental structures (Figure 1) and the relatively large
fluctuations induced by biasing protocols versus those induced
by standard MD simulations (Figure 3).41,63

Finally, ABP was one of the two targets used in ref 63 to
investigate the performance of accelerated54 versus conven-
tional MD simulations in reproducing near-native conforma-
tions of the ABP−ALL complex. Accelerated MD simulations
(∼2.5 μs in cumulative simulation time) were performed with
both the single- and double-boost approaches. As expected,
only the biased simulations were able to sample closed (holo-
like) conformations of the binding site (defined by any residue
with at least one atom within 5 Å from the ligand), reaching
values of the RMSDBS as low as 1.42 Å. Using the same
definition of the binding site, we obtained RMSDBS values as
low as 1.20 Å for EDES4w and EDES3w, with 8.5% and 9.3% of
structures, respectively, having RMSDBS < 2 Å (see Table 1).
In ref 63 the docking was performed with the package
Glide79,80 on representatives of the 10 (out of the 50
extracted) most populated clusters obtained with a volumetric
approach developed by the authors in order to collect
structures with maximal differences in the accessible space
within the binding site. Among the top 10 clusters of poses, the
sixth was near-native and the only one displaying structural
stability in further refinement via 50 ns-long standard MD
simulations in explicit solvent. These results compare well with
our findings in Tables 2 and 3.
Related Approaches. As stated in the Introduction,

methods based on rescaling (scaling down) of protein−ligand
interactions (originating from the soft docking approach28,88)
generally improve docking outcomes when binding is
associated with minor backbone rearrangements. Their
applicability has been extended by coupling them with side-

chain optimization/repacking using a variety of energy
minimization, MC, or MD simulations.28 Several publica-
tions41,64,89 have reported interesting developments exploiting
these ideas to bias sampling toward druggable conformations
without relying on the identification of the putative binding
site(s). Johnson and Karanicolas41,89 implemented within the
Rosetta software suite90 an approach to enhance the sampling
of protein conformations suitable for small-molecule binding
by biasing the fluctuations of the volume of surface pockets.
The conformations generated by their approach resemble
known inhibitor-bound structures more closely than equivalent
ensembles of unbiased conformations. Oleinikovas et al.64

developed a method based on Hamiltonian replica-exchange
cosolvent MD simulations that effectively enhance the
discovery of cryptic pockets for different protein targets. By
scaling of the nonbonded interactions between apolar atoms of
the protein and water molecules, the properties of the latter
shift toward ligand-like behavior, increasing cryptic site
opening. These methodologies are similar to EDES in scope,
although their application was focused rather on enhancing the
discovery (opening) of druggable (including cryptic) sites. Our
approach instead was primarily devised to enhance the
sampling of holo-like conformations, although it proved to
be promising also in increasing the number of druggable
conformations sampled in MD simulations (Table 4). Another
class of methods primarily developed to generate bound-like
protein conformations is the one based on elastic networks,
whereby protein flexibility is incorporated through local/global
modes, exploiting in some cases additional biases.17,61,91−94

These approaches have the advantage of being computationally
cheap. Some were able to reproduce very large conformational
changes associated with protein−ligand binding, up to the
nanometer range. To give an example, Doruker and co-workers
recently developed a protocol that, starting from apo structures
∼4 to 15 Å (backbone RMSD) away from their holo
counterparts, reproduced the holo conformations within
∼1.5 to ∼4 Å.92,93 They also assessed the performance of
these ensembles of structures (filtered to discard conformers
with gyration radii larger than that of the apo protein) in
docking, reporting near-native poses for three out of five
targets. The two most challenging systems were those featuring
the largest conformational changes upon ligand binding.

■ CONCLUSIONS AND PERSPECTIVES
We have presented a proof-of-concept study of a novel
protocol allowing the generation of holo-like and druggable
conformations of proteins and improving the performance of
ensemble docking. Its robustness and general applicability were
tested using two different docking programs against three
challenging protein targets undergoing different extents of
conformational changes upon ligand binding. The key points
are (i) the use of gentle, adaptive biases on a carefully designed
new set of CVs, enabling the generation of maximally diverse
conformations of the binding site, including a relevant fraction
of holo-like/druggable ones, and (ii) a multistep cluster
analysis performed on the CVs and able to generate a tractable
number of conformations while maintaining or even increasing
(compared with the distributions from the MD simulations)
the fraction of holo-like protein structures.
Looking at future developments, a straightforward way to

further improve the conformational sampling of the binding
site could be to couple our algorithm with cosolvent
simulations,67,95 as was done, e.g., in ref 64. Furthermore,
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our method could be combined with others that enhance the
sampling of orthogonal degrees of freedom, such as global
protein motions,17,61,92,93,96 rotations around torsional an-
gles,62,63 secondary structure changes,97,98 or rescaled protein−
ligand interactions,55,64 just to cite a few options. In addition,
experimental information from various sources could be
encoded in new CVs and/or restraints. Furthermore, the
number of cluster representatives used in docking calculations
could be further lowered, e.g., by applying filters to the
gyration radius92 or different criteria exploiting only the
information on the apo structure.
While we focused on cases for which the ligands are known,

we are confident that our EDES approach should also be
valuable in the context of virtual screening, with the enhanced
binding pocket sampling leading to a potentially higher
number of interesting lead candidates. As a long-term goal,
we aim to create a database of protein structures that should
help in reducing the cost associated with the generation of the
structures for ensemble docking runs, allowing for a single
target virtual screening of thousands of compounds in a
reasonable amount of time. The ensemble of targets could also
be used to reposition existing drugs for new therapeutic uses,
as recently suggested.51

■ MATERIALS AND METHODS
Standard MD Simulations. Standard all-atom MD

simulations were carried out using the pmemd module of the
AMBER1699 molecular modeling software. Topology files were
created for each system using the LEaP module of
AmberTools17 starting from the experimental structures
available in the Protein Data Bank (PDB IDs 1JEJ70 and
1JG670 for BGT and BGT−UDP, 1RTC73 and 1BR574 for
RIC and RIC−NEO, and 1GUD78 and 1RPJ78 for ABP and
ABP−ALL, respectively). The ff14SB100 and GAFF101 force
fields were used for proteins and ligands, respectively. Missing
parameters for the latter were generated using the antechamber
module of AmberTools17. In particular, atomic restrained
electrostatic potential charges were derived after a structural
optimization performed with Gaussian 09.102 Each structure
was solvated with the explicit TIP3P water model, and its net
charge was neutralized with the required number of randomly
placed K+ or Cl− ions. The total number of atoms was ∼86 000
for BGT/BGT−UDP, ∼54 000 for RIC/RIC−NEO, and
∼62 000 for ABP/ABP−ALL. Periodic boundary conditions
were employed, and long-range electrostatics was evaluated
through the particle-mesh Ewald algorithm using a real-space
cutoff of 12 Å and a grid spacing of 1 Å per grid point in each
dimension. The van der Waals interactions were treated by a
Lennard-Jones potential using a smooth cutoff (switching
radius 10 Å, cutoff radius 12 Å). The initial distance between
the protein and the edge of the box was set to be at least 16 Å
in each direction. Multistep energy minimization with a
combination of the steepest-descent and conjugate-gradient
methods was carried out to relax internal constraints of the
systems by gradually releasing positional restraints. Following
this, the systems were heated from 0 to 310 K in 10 ns of
constant-pressure heating (NPT) using the Langevin thermo-
stat (collision frequency of 1 ps−1) and the Berendsen barostat.
After equilibration, four production runs of 2.5 μs each (for a
total of 10 μs for each system) were performed for the apo
systems, while a single 1 μs-long simulation was performed for
each complex. A time step of 2 fs was used for preproduction
runs, while equilibrium MD simulations were carried out with

a time step of 4 fs in the NPT ensemble (using a MC barostat)
after hydrogen mass repartitioning.103 Coordinates from
production trajectories were saved every 100 and 10 ps for
MDapo and MDholo, respectively.

Metadynamics Simulations. Bias-exchange well-tem-
pered metadynamics simulations57,68,69 were performed on
the three apo proteins using the GROMACS 2016.5
package104 and the PLUMED 2.3.5 plugin.105 The last
conformation saved from the equilibration step from MDapo
was used as the starting structure for each simulation. AMBER
parameters were ported to GROMACS using the acpype
parser.106 To enhance the sampling of different binding site
shapes, we used the following four CVs defined by including all
heavy atoms of the residues lining the binding site itself: the
radius of gyration of the binding site (RoGBS) calculated using
the gyration built-in function of PLUMED and the numbers of
(pseudo)contacts across the “inertia planes” (CIP1,2,3) of the
binding site, defined as the planes orthogonal to the three
principal inertia axes and passing through the center of mass of
the binding site.
Binding site residues were defined as those within 3 Å (BGT

and RIC) or 4 Å (ABP) of the ligand in the experimental
structure of the complex (Figure S1). The cutoff was increased
for ABP−ALL because of the low number of residues (seven)
found when a 3 Å cutoff was used. Very similar definitions
were found using the COACH-D Web server with the apo
structures (Table S2). The CVs were calculated by an in-house
tcl script based on the VMD orient function. Namely, residues
lining the binding site were split into two lists A and B
according to the positions of the geometrical centers of their
backbones on each of the two sides of the inertia plane, and the
overall number of pseudocontacts Nc between the two groups
was calculated through the coordination keyword of PLUMED,
which implements a switching function such as the following:
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with r0 = 8 Å, n = 6, and m = 12. Each replica was simulated for
100 ns (as our aim is primarily to enhance sampling of
different shapes of the binding site and not to obtain
converged free energy profiles), so that each window
accumulated 400 ns of simulation time. Coordinates were
saved every 10 ps. The height w was set to 0.6 kcal/mol for all
systems, while the widths si of the Gaussian hills were set
according to established prescriptions107 to 0.15, 0.05, and
0.08 Å (RoGBS), 5.4, 4.8, and 1.6 (CIP1), 5.1, 3.2, and 4.9
(CIP2), and 5.3, 3.1, and 6.0 (CIP3) for BGT, RIC, and ABP,
respectively. Hills were added every 2 ps, while the bias-
exchange frequency was set to 20 ps. The bias factor for well-
tempered metadynamics was set to 10. The “windows”
approach briefly described in the Results and Discussion was
implemented using RoGBS as the control parameter. Namely,
we applied restraints (force constants set to 50 and 10 kcal
mol−1 Å−2 for the upper and lower walls, respectively, as we
seek for compression rather than enlargement of the binding
site) at values of RoGBS that were 7.5% higher and lower than
the value measured in the apo X-ray structure (RoGX‑ray

apo ).
Then, from the trajectory corresponding to this first window,
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we selected a random conformation of the protein whose
RoGBS was 5% lower than RoGX‑ray

apo and performed another
simulation with walls centered at ±7.5% RoGX‑ray

apo from this
new center, repeating this procedure so as to simulate a total of
four windows (see Figure 3 and Table S1). It should be noted
that the walls were set to allow partial overlap between
adjacent windows, which indeed occurred in all cases (Figure
3).
Cluster Analysis of MD Trajectories. The cluster analysis

was performed on the four CVs defined above using in-house
R scripts. We implemented a multistep strategy aimed at
increasing in an unbiased manner the percentage of
conformations similar to the native structure of the holo
protein. Namely, the distribution of RoGBS values sampled
during the MD simulation was binned into 10 equally wide
slices, and hierarchical agglomerative clustering (using the
built-in function hclust and the Euclidean method to compute
the distance matrix) was performed on the four CVs within
each slice, setting the number of generated clusters to xi = (Ni/
Ntot)·Nc, where Ni, Ntot, and Nc = 500 are the number of
structures within the ith slice, the total number of structures,
and the total number of clusters, respectively. The resulting Nc
clusters were used as starting point to perform a second cluster
analysis with the K-means method and requiring a total of Nc
clusters (with the maximum number of iterations set to
10 000). Despite not making any use of specific knowledge of
the structure of the complexes, our informed strategy was able
to generate a larger fraction of cluster structures displaying
RMSDBS < 2 Å than that obtained from the standard
application of K-means using randomly selected conformations
as starting points (Figure S5). In fact, this latter initialization
strategy is considered one of the most unreliable ones on the
basis of a comparison of several alternative algorithms on a
range of diverse data sets.108 We compared our clustering
protocol to a more standard calculation based dRMSD at the
binding site (using the hierarchical agglomerative method
implemented in the cpptraj module of the AMBER package).
The scripts to divide the binding site residues according to the
CIP scheme and perform the cluster analysis according to our
ad hoc scheme are available at the webpage https://github.
com/haddocking/EDES.
Molecular Docking. Molecular docking calculations were

performed with AutoDock482 and the HADDOCK Web server
version 2.2.81,109 This choice allowed our methodology to be
validated against two programs differing in their search
algorithms, scoring functions, and pose selection schemes.
Both programs were first validated for redocking against
experimental structures (Table S8). Next, they were used to
perform docking from the generated ensembles using default
settings, apart from the following changes.
In AutoDock4, we used the Lamarckian genetic algorithm

(LGA) to perform a hybrid global−local search of the docking
poses. The grid density (spacing parameter changed from 0.375
to 0.25 Å) and number of energy evaluations (ga_num_evals
increased by a factor of 10 from the default value) were both
increased, with the purpose to avoid repeating each calculation
several times to obtain converged results. For each set of
structures, 500 rigid docking independent calculations were
performed using an adaptive grid enclosing all of the residues
belonging to the binding site. Next, the top poses (in total 500,
one for each docking run) were clustered using the cpptraj
module of AmberTools17 with a hierarchical agglomerative
algorithm and a cutoff of 1.5 Å for the RMSD distance matrix.

In HADDOCK, a single docking run was performed per
case, starting from the various ensembles of 500 conforma-
tions, with increased sampling (10000/400/400 models for
rigid-body docking (it0 step), semiflexible refinement (it1
step), and final refinement in explicit solvent (wat step). The
weight of the intermolecular van der Waals energy for the
initial rigid-body docking stage was increased to 1.0 (from the
default value of 0.01), RMSD-based clustering was selected
with a cutoff of 1 Å, and the docking was guided by ambiguous
distance restraints defined for the residues of the binding site
and the ligand.110 In the rigid-body stage, the protein binding
site residues were defined as “active”, effectively drawing the
ligand into the binding site without restraining its orientation.
For the subsequent stages, the restraints were such that only
the ligand was active, allowing it to explore the binding site
better while maintaining at least one contact with its residues.

Druggability Calculations. For each structure within the
four ensembles (MDapo, MDholo, EDES3w, and EDES4w)
generated for the three proteins, we used the open-source
pocket detection package f-pocket84 to identify and character-
ize putative protein binding sites. The algorithm implemented
in f-pocket is based on Voronoi tessellation and alpha spheres
and has proven to be stable, fast, and accurate, performing very
well on state-of-the-art data sets.84 Moreover, for each putative
binding site identified, f-pocket also estimates its druggability
through the calculation of a “druggability score”, D,85 ranging
from 0 (no druggable pocket) to 1 (high probability to be
druggable). To evaluate the druggability of the known binding
sites on the three proteins investigated here, we recorded only
D values associated with pockets whose centers of mass were
found to be within 6 Å of that of the binding site identified in
the experimental structures.

Figures and Graphs. Figures were generated with Maestro
10.6,111 VMD 1.9.3,112 and InkScape 0.91. Graphs were
created with xmgrace 5.1.25.
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