2,080 research outputs found

    Factors associated with parents’ and adolescents’ perceptions of oral health and need for dental treatment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72207/1/j.1600-0528.2006.00336.x.pd

    Inertial sensor real-time feedback enhances the learning of cervical spine manipulation: a prospective study.

    Get PDF
    BACKGROUND: Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. METHODS: Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. RESULTS: There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). CONCLUSION: Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training

    Establishing a follow-up of the Swiss MONICA participants (1984-1993): record linkage with census and mortality data

    Get PDF
    BACKGROUND: To assess the feasibility and quality of an anonymous linkage of 1) MONICA (MONItoring of trends and determinants in CArdiovscular disease, three waves between 1984 and 1993) data with 2) census and mortality records of the Swiss National Cohort in order to establish a mortality follow-up until 2008. Many countries feature the defect of lacking general population cohorts because they have missed to provide for follow-up information of health surveys. METHODS: Record linkage procedures were used in a multi-step approach. Kaplan-Meier curves from our data were contrasted with the survival probabilities expected from life tables for the general population, age-standardized mortality rates from our data with those derived from official cross-sectional mortality data. Cox regression models were fit to investigate the influence of covariates on survival. RESULTS: 97.8% of the eligible 10,160 participants (25-74y at baseline) could be linked to a census (1990: 9,737; 2000: 8,749), mortality (1,526, 1984-2008) and/or emigration record (320, 1990-2008). Linkage success did not differ by any key study characteristic. Results of survival analyses were robust to linkage step or certainty of a correct link. Loss to follow-up between 1990 and 2000 amounted to 4.7%. MONICA participants had lower mortality than the general population, but similar mortality patterns, (e.g. variation by educational level, marital status or region). CONCLUSIONS: Using anonymized census and death records allowed an almost complete mortality follow-up of MONICA study participants of up to 25 years. Lower mortality compared to the general population was in line with a presumable 'healthy participant' selection in the original MONICA study. Apart from that, the derived data set reproduced known mortality patterns and showed only negligible potential for selection bias introduced by the linkage process. Anonymous record linkage was feasible and provided robust results. It can thus provide valuable information, when no cohort study is available

    The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis

    Get PDF
    We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes induced by β-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are induced independently of TCF/Lef. The VDR is required for β-catenin induced hair follicle formation in adult epidermis, and the vitamin D analog EB1089 synergises with β-catenin to stimulate hair differentiation. Human trichofolliculomas (hair follicle tumours) are characterized by high nuclear β-catenin and VDR, whereas infiltrative basal cell carcinomas (BCCs) have high β-catenin and low VDR levels. In mice, EB1089 prevents β-catenin induced trichofolliculomas, while in the absence of VDR β-catenin induces tumours resembling BCCs. We conclude that VDR is a TCF/Lef-independent transcriptional effector of the Wnt pathway and that vitamin D analogues have therapeutic potential in tumors with inappropriate activation of Wnt signalling

    Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms

    Full text link
    [EN] The main aim of this study is to establish the effect of the Exploitation and Exploration; and the influence of these learning flows on the Innovative Outcome (IO). The Innovative Outcome refers to new products, services, processes (or improvements) that the organization has obtained as a result of an innovative process. For this purpose, a relationship model is defined, which is empirically contrasted, and can explains and predicts the cyclical dynamization of learning flows on innovative outcome in knowledge intensive firms. The quantitative test for this model use the data from entrepreneurial firms biotechnology sector. The statistical analysis applies a method based on variance using Partial Least Squares (PLS). Research results confirm the hypotheses, that is, they show a positive dynamic effect between the Exploration and the Innovative as outcomes. In the same vein, they results confirm the presence of the cyclic movement of innovative outcome with the Exploitation.In addition, this research is part of the Project ECO2015-71380-R funded by the Spanish Ministry of Economy, Industry and Competitiveness and the State Research Agency. Co-financed by the European Regional Development Fund (ERDF).Vargas-Mendoza, NY.; Lloria, MB.; Salazar Afanador, A.; Vergara Domínguez, L. (2018). Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms. International Entrepreneurship and Management Journal. 14(4):1053-1069. https://doi.org/10.1007/s11365-018-0496-5S10531069144Alegre, J., & Chiva, R. (2008). Assessing the impact of organizational learning capability on product innovation performance: an empirical test. Technovation, 28, 315–326.Amara, N., Landry, R., Becheikh, N., & Ouimet, M. (2008). Learning and novelty of innovation in established manufacturing SMEs. Technovation, 28, 450–463.Aragón-Mendoza, J., Pardo del Val, M., & Roig, S. (2016). The influence of institutions development in venture creation decision: a cognitive view. Journal of Business Research, 69(11), 4941–4946.Ardichvili, A. (2008). Learning and knowledge sharing in virtual communities of practice: motivators, barriers, and enablers. Advances in Developing Human Resources, 10(4), 541–554.Argyris, C., & Schön, D. (1978). Organizational learning: a theory of action perspective. Reading: Addison Wesley.Bagozzi, R. P., Yi, Y., & Singh, S. (1991). On the use of structural equation models in experimental designs: two extensions international. Journal of Research in Marketing, 8, 125–140.Belda, J., Vergara L., Salazar, A., & Safont G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs, accepted for publication in Signal Processing.Boland, R. J. J., & Tenkasi, R. V. (1995). Perspective making and perspective taking in communities of knowing. Organization Science, 6(4), 350–372.Bontis, N., (1998). Intellectual capital: an exploratory study that develops measures models. Management Decision, 36, 63–76.Bontis, N. (1999). Managing an organizational learning system by aligning stocks and flows of knowledge: an empirical examination of intellectual capital, knowledge management, and business performance. 1999. Management of Innovation and New Technology Research Centre, McMaster University.Bontis, N., Keow, W., & Richardson, S. (2000). Intellectual capital and the nature of business in Malaysia. Journal of Intellectual Capital, 1(1), 85–100Bontis, N., Hullan, J., & Crossan, M. (2002). Managing an organizational learning system by aligning stocks and flows. Journal of Management Studies, 39, 438–469.Brachos, D., Kostopulos, K., Sodersquist, K. E., & Prastacos, G. (2007). Knowledge effectiveness, social context and innovation. Journal of Knowledge Management, 11(5), 31–44.Calantone, R. J., Cavusgil, S. T., & Zhao, Y. (2002). Learning orientation, firm innovation capability, and firm performance. Industrial Marketing Management, 31, 515–524.Chang, T. J., Yeh, S. P., & Yeh, I. J. (2007). The effects of joint rewards system in new product development. International Journal of Manpower, 28(3/4), 276–297.Chin, W. (1998). The partial least square approach to structural equation modeling. In G. A. Marcoulides (Ed.) (pp. 294–336). New Jersey: Lawrence Erlbaum Associates.Cho, N., Li, G., & Su, C. (2007). An empirical study on the effect of individual factors on knowledge sharing by knowledge type. Journal of Global Business and Technology, 3(2), 1–15.Cohen, W. M., & Levin, R. C. (1989). Empirical studies of innovation and market structure. In R. Schmalansee & R. D. Willing (Eds.), Handbook of industrial organization II. New York: Elsevier.Cohen, W. M., & Levinthal, D. A. (1990). Absorptive-capacity – a new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.Cooper, R. G. (2000). New product performance: what distinguishes the star products. Austrian Journal of Management, 25, 17–45.Crossan, M., & Berdrow, I. (2003). Organizational learning and strategic renewal. Strategic Management Journal, 24, 1087–1105.Crossan, M., & Apaydin, M. (2010). A multi-dimensional framework of organizational innovation: a systematic review of the literature. Journal of Management Studies, 47(6), 1154–1191.Crossan, M., Lane, H. W., & White, R. E. (1999). An organizational learning framework: from intuition to institution. Academy of Management Review, 24, 522–537.Damanpour, F., & Aravind, D. (2012). Managerial innovation: conceptions, processes, and antecedents. Management and Organization Review, 8(2), 423–454.Damanpour, F., & Shanthi, G. (2001). The dynamics of the adoption of products and process innovations in organizations. Journal of Management Studies, 38(1), 21–65.Decarolis, D. M., & Deeds, D. L. (1999). The impact of stock and flows of organizational knowledge on firm performance: An empirical investigation of the biotechnology industry. Strategic Management Journal, 20, 953–968.Demartini, C. (2015). Relationships between social and intellectual capital: empirical Evidence from IC statements. Knowledge and Process Management, 22(2), 99–111.Dupuy, F. (2004). Sharing knowledge: they why and how of organizational change. Hampshire: Palgrave Macmillan.Fornell, C., & Bookstein, F. I. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.Ganter, A., & Hecker, A. (2013). Deciphering antecedents of organizational innovation. Journal of Business Research, 66(5), 575–584.Ganter, A., & Hecker, A. (2014). Configurational paths to organizational innovation: qualitative comparative analyses of antecedents and contingencies. Journal of Business Research, 67, 1285–1292.Gopalakrishnan, S., & Damanpour, F. (1997). A review of innovation research in economics, sociology and technology management. International Journal of Management Science, 25, 15–28.Hedberg, B. (1981). How organizations learn and unlearn. In P. Nystrom & W. Starbuck (Eds.), Handbook of organizational design. New York: Oxford University.Hedlund, G., & Nonaka, I. (1993). Models of knowledge management in the west and Japan. In: P. Lorange, B. Chacravrarthy, J. Ross, and J. Van de ven (Eds.) Cambridge: Basil Blackwell.Henseler, J., Ringle, C.M., & Sinkovics, R.R. (2009). The use the partial least squares path modeling. In: R. Sinkovics and N. Pervez (Eds.) 277–319.Hsu, I. (2006). Enhancing employee tendencies to share knowledge-case studies on nine companies in Taiwan. International Journal of Information Management, 26(4), 326–338.Hsu, I. (2008). Knowledge sharing practices as a facilitating factor for improving organizational performance though human capital: a preliminary test. Expert Systems with Application, 35, 316–1326.Huang, Q., Davison, R., & Gu, J. (2008). Impact of personal and cultural factors on knowledge sharing in China. Asia Pacific Journal Management, 25(3), 451–471.Ibarra, H. (1993). Network centrality, power, and innovation involvement – determinants of technical and administrative roles. Academy of Management Journal, 36(3), 471–501.Iebra, I. L., Zegarra, P. S., & Zegarra, A. S. (2011). Learning for sharing: an empirical analysis of organizational learning and knowledge sharin. International Entrepreneurship Management Journal, 7, 509–518.Ipe, M. (2003). Knowledge sharing in organizations: a conceptual framework. Human Resource Development Review, 2(4), 337–359.Jenkin, T. (2013). Extending the 4I organizational learning model: information sources, foraging processes and tools. Administrative Sciences, 3, 96–109.Jiménez-Jiménez, D., & Sanz-Valle, R. (2011). Innovation, organizational learning, and performance. Journal of Business Research, 64, 408–417.Kane, G. C., & Alavi, M. (2007). Information technology and organizational learning: an investigation of exploration and exploitation processes. Organization Science, 18(5), 796–812.Kleinbaum, D. G., Kupper, N. N., Muller, K. E. (1988). Applied regression analysis and other Multivariable’s methods, PWS KENT.Klomp, L., & Van Leeuwen, G. (2001). Linking innovation and firm performance: a new approach. International Journal of the Economics of Business, 8(3), 343–364.Lansisalmi, H., Kivimaki, M., Aalto, P., & Ruoranen, R. (2006). Innovation in healthcare: a systematic review of recent research. Nursing Science Quarterly, 19(1), 66–72.Laperrière, A., & Spence, M. (2015). Enacting international opportunities: the role of organizational learning in knowledge-intensive business services. Journal of International Entrepreneurship, 13(3), 212–241.Levitt, B., & March, J. G. (1988). Organizational learning. Annual Review of Sociology, 14, 319–340.Lin, H. (2007). Knowledge sharing and firm innovation capability: an empirical study. International Journal of Manpower, 28(3/4), 315–332.Lloria, M. B., & Moreno-Luzón, M. D. (2014). Organizational learning: proposal of an integrative scale and research instrument. Journal of Business Research, 67, 692–697.March, J. G. (1991). Exploration and exploitation in organizational learning. Organizational Science, 2, 71–87.Matikainen, M., Terho, H., Parvinen, P., & Juppo, A. (2016). The role and impact of firm’s strategic orientations on launch performance: significance of relationship orientation. Journal of Business & Industrial Marketing, 31(5), 625–639.Mone, M. A., McKinley, W., & Barker, V. L. (1998). Organizational decline and innovation: a contingency framework. Academy of Management Review, 23, 115–132.Moreno-Luzón, M. D., & Lloria, B. (2008). The role of non-structural and informal mechanisms of integration and integration as forces in knowledge creation. British Journal of Management, 19, 250–276.Moskaliuk, J., Bokhorst, F., & Cress, U. (2016). Learning from others' experiences: how patterns foster interpersonal transfer of knowledge-in-use. Computers in Human Behavior, 55, 69–75.Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. How Japanese companies create the dynamics of innovation. New York: Oxford University Press.Nonaka, I., & von Krogh, G. (2009). Perspective tacit knowledge and knowledge conversion: controversy and advancement in organizational knowledge creation theory. Organization Science, 20(3), 635–652.Parida, V., Lahti, T., & Wincent, J. (2016). Exploration and exploitation and firm performance variability: a study of ambidexterity in entrepreneurial firms. International Entrepreneurship Management Journal, 12, 1147–1164.Pew, H., Plowman, D., & Hancock, P. (2008). The involving research on intellectual capital. Journal of Intellectual Capital, 9, 585–608.Potter, R. E., & Balthazard, P. A. (2004). The role of individual memory and attention processes during electronic brainstorming. MIS Quarterly, 28(4), 621–643.Ramadani, V., Hyrije, A. A., Léo-Paul, D., Gadaf, R., & Sadudin, I. (2017). The impact of knowledge spillovers and innovation on firm-performance: findings from the Balkans countries. International Entrepreneurship Management Journal, 13, 299–325.Ren, S., Shu, R., Bao, Y., & Chen, X. (2016). Linking network ties to entrepreneurial opportunity discovery and exploitation: the role of affective and cognitive trust. International Entrepreneurship and Management Journal, 12(2), 465–485.Ringle, C. M., Wende, S., & Will, A. (2005). Smart PLS 2.0 (M3) beta, Hamburg: http://www.smartpls.de .Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM. MIS Quarterly, 36(1), iii–xiv.Sanchez, R., & Heene, A. (1997). A competence perspective on strategic learning and knowledge management. En Sanchez, R. and Heene, A. (eds.) Strategic learning and knowledge management. John Wiley and Sons.Seidler-de Alwis, R., & Hartmann, E. (2008). The use of tacit knowledge within innovative companies: knowledge management in innovative enterprises. Journal of Knowledge Management, 12(1), 133–147.Shrivastava, P. (1983). A typology of organizational learning systems. Journal of Management Studies, 20, 7–28.Tansky, J., Ribeiro, D., & Roig, S. (2010). Linking entrepreneurship and human resources in globalization. Human Resource Management, 49(2), 217–223.Teece, D. (2012). Dynamic capabilities: routines versus entrepreneurial action. Journal of Management Studies, 49(8), 1395–1401.Tenenhaus, M., Vinzi, V., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 49, 159–205.vande Vrande, V., de Jong, J., Vanhaverbeke, W., & Rochemont, M. (2009). Open innovation in SMEs: trends, motives and management challenges. Technovation, 29, 423–437.Vargas, N., & Lloria, M. B. (2014). Dynamizing intellectual capital through enablers and learning flows. Industrial Management and Data Systems, 114(1), 2–20.Vargas, N., & Lloria, M. B. (2017). Performance and intellectual capital: how enablers drive value creation in organisations. Knowledge and Process Management, 24(2), 114–124.Vargas, N., Lloria, M. B., & Roig-Dobón, S. (2016). Main drivers of human capital, learning and performance. The Journal of Technology Transfer, 41(5), 961–978.Vergara, L., Salazar, A., Belda, J., Safont, G., Moral, S., & Iglesias, S. (2017). Signal processing on graphs for improving automatic credit card fraud detection. Proceeding of 2017 I.E. 51st international Carnahan Conference on Security Technology (ICCST 2017), https://doi.org/10.1109/CCST.2017.8167820 , 23–26 Oct, 2017, Madrid, Spain.Wallin, M. W., & Von Krogh, G. (2010). Organizing for open innovation: focus o the integration of knowledge. Organizational Dynamics, 39(2), 145–154.Wang, C. L., & Ahmed, P. K. (2004). Linking innovation and firm performance: a new approach. European International Journal of Technology Management, 27, 674–688.Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 47–74). Cambridge: Academic Press.Wold, H. (1985). Factors influencing the outcome of economic sanctions. In Sixto Ríos Honorary. Trabajos de Estadística and de Investigación Operativa, 36(3), 325–337

    Genetic Characterization of Venezuelan Equine Encephalitis Virus from Bolivia, Ecuador and Peru: Identification of a New Subtype ID Lineage

    Get PDF
    Venezuelan equine encephalitis virus (VEEV) has been responsible for hundreds of thousands of human and equine cases of severe disease in the Americas. A passive surveillance study was conducted in Peru, Bolivia and Ecuador to determine the arboviral etiology of febrile illness. Patients with suspected viral-associated, acute, undifferentiated febrile illness of <7 days duration were enrolled in the study and blood samples were obtained from each patient and assayed by virus isolation. Demographic and clinical information from each patient was also obtained at the time of voluntary enrollment. In 2005–2007, cases of Venezuelan equine encephalitis (VEE) were diagnosed for the first time in residents of Bolivia; the patients did not report traveling, suggesting endemic circulation of VEEV in Bolivia. In 2001 and 2003, VEE cases were also identified in Ecuador. Since 1993, VEEV has been continuously isolated from patients in Loreto, Peru, and more recently (2005), in Madre de Dios, Peru. We performed phylogenetic analyses with VEEV from Bolivia, Ecuador and Peru and compared their relationships to strains from other parts of South America. We found that VEEV subtype ID Panama/Peru genotype is the predominant one circulating in Peru. We also demonstrated that VEEV subtype ID strains circulating in Ecuador belong to the Colombia/Venezuela genotype and VEEV from Madre de Dios, Peru and Cochabamba, Bolivia belong to a new ID genotype. In summary, we identified a new major lineage of enzootic VEEV subtype ID, information that could aid in the understanding of the emergence and evolution of VEEV in South America

    Bonobos, chimpanzees, gorillas, and orang utans use feature and spatial cues in two spatial memory tasks

    Get PDF
    Animals commonly use feature and spatial strategies when remembering places of interest such as food sources or hiding places. We conducted three experiments with great apes to investigate strategy preferences and factors that may shape them. In the first experiment, we trained 17 apes to remember 12 different food locations on the floor of their sleeping room. The 12 food locations were associated with one feature cue, so that feature and spatial cues were confounded. In a single test session, we brought the cues into conflict and found that apes, irrespective of species, showed a preference for a feature strategy. In the second experiment, we used a similar procedure and trained 25 apes to remember one food location on a platform in front of them. On average, apes preferred to use a feature strategy but some individuals relied on a spatial strategy. In the final experiment, we investigated whether training might influence strategy preferences. We tested 21 apes in the platform set-up and found that apes used both, feature and spatial strategies irrespective of training. We conclude that apes can use feature and spatial strategies to remember the location of hidden food items, but that task demands (e.g. different numbers of search locations) can influence strategy preferences. We found no evidence, however, for the role of training in shaping these preferences

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore