51 research outputs found

    Macroevolution of the plant–hummingbird pollination system

    Get PDF
    ABSTRACTPlant–hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant–hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre‐dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build‐up of both diversities coinciding temporally, and hence suggesting co‐diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species‐level interaction data in macroevolutionary studies

    WorldFAIR (D10.3) Agricultural biodiversity FAIR data assessment rubrics

    Get PDF
    The WorldFAIR Case Study on Agricultural Biodiversity (WP10) addresses the challenges of advancing interoperability and mobilising plant-pollinator interactions data for reuse. Previous efforts, reported in WorldFAIR Deliverable 10.1, ‘Agriculture-related pollinator data standards use cases report’ (Trekels et al., 2023), provided an overview of projects, good practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions. It also outlined a work plan for conducting pilot studies. Deliverable 10.2 (Drucker et al., 2024) presented Agricultural Biodiversity Standards, Best Practices and Guidelines Recommendations. This deliverable presented results from six pilot studies that adopted standards and recommendations from the earlier report. The current report complements the efforts with Agricultural Biodiversity FAIR data assessment rubrics.We introduce a set of FAIR assessment tools tailored to the plant-pollinator interactions domain. These tools are designed to help researchers and institutions evaluate adherence to the FAIR principles. In the discovery phase, we found that a significant amount of data on plant-pollinator interactions is available as supplementary files of research articles, in a diversity of formats such as PDFs, Excel spreadsheets, and text files. The diversity of approaches and the lack of appropriate data vocabularies lead to confusion, information loss, and the need for complex data interpretation and transformation. Our proposed framework primarily targets researchers in this domain who wish to assess the FAIRness of the data they produce and take action to improve it. However, we believe it can also benefit data reviewers, data stewards, data repository managers and librarians dealing with plant-pollinator data. Our approach focuses on being as familiar as possible with the researcher's practices, language, and jargon. Ultimately, we aim to promote data publishing and reuse in the plant-pollinator interactions domain.We present a ‘Rubric for the assessment of Plant-Pollinator Interactions Data’ with examples from the data from the pilots developed in Deliverable 10.2 and in relation to the FAIR Implementation Profile (FIP) created by Work Package 10. We conduct ‘dataset assessments’ of available data from research projects surveyed in the discovery phase. Additionally, we describe in detail the ‘Automated FAIR-enabled Data Reviews’ generated by the Global Biotic Interactions (GLoBI) infrastructure, with examples from the pilots. We believe the tools described in this report will encourage data publishing and reuse in the plant-pollinator interactions domain. Moving from diverse approaches and siloed initiatives to widely available FAIR plant-pollination interactions data for scientists and decision-makers will enable the development of integrative studies that enhance our understanding of species biology, behaviour, ecology, phenology, and evolution

    Data standardization of plant-pollinator interactions

    Get PDF
    Background Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms

    Data standardization of plant-pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms.Fil: Salim, José A. Universidade de Sao Paulo; BrasilFil: Saraiva, Antonio M.. Universidade de Sao Paulo; BrasilFil: Zermoglio, Paula Florencia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; ArgentinaFil: Agostini, Kayna. Universidade Federal do São Carlos; BrasilFil: Wolowski, Marina. Universidade Federal de Alfenas; BrasilFil: Drucker, Debora P.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Soares, Filipi M.. Universidade de Sao Paulo; BrasilFil: Bergamo, Pedro J.. Jardim Botânico do Rio de Janeiro; BrasilFil: Varassin, Isabela G.. Universidade Federal do Paraná; BrasilFil: Freitas, Leandro. Jardim Botânico do Rio de Janeiro; BrasilFil: Maués, Márcia M.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Rech, Andre R.. Universidade Federal dos Vales do Jequitinhonha e Mucuri; BrasilFil: Veiga, Allan K.. Universidade de Sao Paulo; BrasilFil: Acosta, Andre L.. Instituto Tecnológico Vale; BrasilFil: Araujo, Andréa C. Universidade Federal do Mato Grosso do Sul; BrasilFil: Nogueira, Anselmo. Universidad Federal do Abc; BrasilFil: Blochtein, Betina. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Freitas, Breno M.. Universidade Estadual do Ceará; BrasilFil: Albertini, Bruno C.. Universidade de Sao Paulo; BrasilFil: Maia Silva, Camila. Universidade Federal Rural Do Semi Arido; BrasilFil: Nunes, Carlos E. P.. University of Stirling; BrasilFil: Pires, Carmen S. S.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Dos Santos, Charles F.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Queiroz, Elisa P.. Universidade de Sao Paulo; BrasilFil: Cartolano, Etienne A.. Universidade de Sao Paulo; BrasilFil: de Oliveira, Favízia F. Universidade Federal da Bahia; BrasilFil: Amorim, Felipe W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: da Silva, Gleycon V.. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Consolaro, Hélder. Universidade Federal de Catalão; Brasi

    Data standardization of plant–pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of termsinfo:eu-repo/semantics/publishedVersio

    ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest

    Get PDF
    Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    Nectar e volateis na polinização de quatro especies de Passiflora L. (Passifloraceae)

    No full text
    Orientadores: Marlies Sazima, Jose Roberto TrigoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de BiologiaResumo: Foram estudadas quatro espécies de Passíflora. P. alata, P. galbana (Parque Estadual de Setiba, Guarapari, ES) e P. mucronata (Parque Estadual da Serra do Mar, Núcleo Picinguaba, Ubatuba, SP), que pertencem ao subgênero Passíflora e ocorrem em vegetação de restinga. P. speciosa Gardn. , subgênero Distephana, ocorre em mata atlântica de tabuleiro da Reserva Florestal da CVRD (RFCVRD), Unhares, ES. Foi analisado qualitativa - e quantitativamente o recurso alimentar e foram identificados os constituintes químicos que compõe as unidades de atração visual e olfativa nestas espécies de Passiflora. Foi observado que as espécies de Passiflora estudadas dependem de vetores de pólen para a produção de frutos. P. alata é melitófila, P. galbana e P. mucronata são quiropterófilas e P. speciosa é ornitófila. A polinização é favorecida pela deflexão dos órgãos reprodutivos, que permite que os animais os toquem. O néctar é o recurso alimentar procurado pelos visitantes florais, sendo que o comportamento dos polinizadores vertebrados parece refletir a disponibilidade do recurso, forrageando quando há mais volume de néctar e quando a previsibilidade da quantidade de recurso é maior. A dinâmica de secreção de néctar das espécies estudadas está relacionada com a hidrólise de amido armazenado no nectário. Parece haver uma relação entre o tipo de polinizador e a composição do néctar, inclusive a quantidade de lipídios presentes e a razão Na+/K+. O espectro de absorção nas faixas UV-VIS encontrado nestas flores se adequa à sensibilidade espectral da visão dos polinizadores, com presença de antocianidinas em P. a/ata e P. speciosa. As espécies quiropterófilas possuem pigmentos que refletem na região do visível, e devem ter uma função menos importante na localização das flores por morcegos. Nas espécies polinizadas por animais cujo olfato é bastante desenvolvido, há maior abundância de classes de compostos voláteis. Compostos aromáticos hidroxilados e monoterpenos são provavelmente os responsáveis pelo perfume adocicado das flores de P. alata. Em P. galbana, estes compostos tem participação expressiva no seu perfil de odores. P. speciosa tem leve odor acre, provavelmente conferido por hidrocarbonetos. Sinais olfativos devem estar permitindo a localização do recurso a longa distância, enquanto que a localização do recurso a curta distância seria possível através de orientação visuail ou acústica. Vários compostos que formam as fragrâncias destas espécies de Passiflora ocorrem em outras espécies de plantas; alguns destes também ocorrem em secreções exócrinas de abelhasAbstract: Four species of Passiflora were studied. P. alata, P. galbana (Parque Estadual de Setiba, Guarapari, ES) and P. mucronata (Parque Estadual da Serra do Mar, Núcleo Picinguaba, Ubatuba, SP), belong to the Passiflora subgenus, and occur in restinga vegetation. P. speciosa Gardn., Distephana subgenus occurs in Atlantic forest in the Reserva Florestal da CVRD (RFCVRD), Unhares. The central aims of this study were to analise qualitative and quantitative aspects of the food resources, and to identify visual and olfactory chemical constituents of the units of attraction in these species of Passiflora, to verify their role in pollinator selection, since they have distinct pollination syndromes. Those Passiflora species depend on pollen vectors to produce fruits. P. alata is mellitophylous, P. galbana and P. mucronata are chiropterophylous and P. speciosa is an ornithophylous species. Pollination is facilitated due to the deflection of the reproductive organs. Floral visitors search for nectar as a food resource; the vertebrate pollinator behavior seems to reflect resource availability, as they forage when large amounts of nectar are found and when quantitative resource predictability is greater. The dynamics of nectar secretion is related to nectary starch hydrolysis. There seems to be a relationship between pollinator type and the nectar composition, such as amounts of lipids and Na+/K+ ratio. The UV-VIS spectral absortion of flowers is adjusted to the pollinators' visual spectral sensitivity, with anthocyanidins present in P. alata and P. speciosa. Pigments of the chiropterophylous species reflect in the visible spectra, and might have a little importance in flower location. There is a higher class diversity among the volatiles compounds in the species pollinated by animais with an acute olfactory sense. Hydroxylated aromatic compounds and monoterpenes are probably responsible for the sweet scent of P. alata. In P. galbana, they are also important compounds in the scent profile. P. speciosa has a very faint acrid smell, probably from hydrocarbons. Long distance resource location is probably accomplished by olfactive signals, although visual or acoustic signals could be responsible for short distance orientation. Fragrance compositions of these Passiflora species show compounds also present in other species and in the exocrine secretions of beesMestradoEcologiaMestre em Ciências Biológica
    corecore