56 research outputs found

    Additively manufactured polyethylene terephthalate scaffolds for Scapholunate Interosseous Ligament Reconstruction

    Full text link
    The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue. The scaffold presented tensile stiffness in the range of 260+/-38 N/mm and ultimate load of 113+/-13 N, which would support physiological loading. A finite element analysis, using inverse finite element analysis for material property identification, showed an adequate fit between simulation and experimental data. The scaffold was then biofunctionalized using two different methods: injected with a Gelatin Methacryloyl solution containing human mesenchymal stem cell spheroids or seeded with tendon-derived stem cells and placed in a bioreactor to undergo cyclic deformation. The first approach demonstrated high cell viability, as cells migrated out of the spheroid and colonised the interstitial space of the scaffold. These cells adopted an elongated morphology suggesting the internal architecture of the scaffold exerted topographical guidance. The second method demonstrated the high resilience of the scaffold to cyclic deformation and the secretion of a fibroblastic related protein was enhanced by the mechanical stimulation. This process promoted the expression of relevant proteins, such as Tenomodulin, indicating mechanical stimulation may enhance cell differentiation and be useful prior to surgical implantation. In conclusion, the PET scaffold presented several promising characteristics for the immediate mechanical stabilisation of disassociated scaphoid and lunate and, in the longer-term, the regeneration of the ruptured SLIL

    Impact of concomitant aortic regurgitation on long-term outcome after surgical aortic valve replacement in patients with severe aortic stenosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognostic value of concomitant aprtic regurgitation (AR) in patients operated for severe aortic stenosis (AS) is not clarified. The aim of this study was to prospectively examine the impact of presence and severity of concomitant AR in patients operated for severe AS on long-term functional capacity, left ventricular (LV) function and mortality.</p> <p>Methods</p> <p>Study group consisted of 110 consecutive patients operated due to severe AS. The patients were divided into AS group (56 patients with AS without AR or with mild AR) and AS+AR group (54 patients with AS and moderate, severe or very severe AR). Follow-up included clinical examination, six minutes walk test (6MWT) and echocardiography 12 and 104 months after AVR.</p> <p>Results</p> <p>Patients in AS group had lower LV volume indices throughout the study than patients in AS+AR group. Patients in AS group did not have postoperative decrease in LV volume indices, whereas patients in AS+AR group experienced decrease in LV volume indices at 12 and 104 months. Unlike LV volume indices, LV mass index was significantly lower in both groups after 12 and 104 months as compared to preoperative values. Mean LVEF remained unchanged in both groups throughout the study. NYHA class was improved in both groups at 12 months, but at 104 months remained improved only in patients with AS. On the other hand, distance covered during 6MWT was longer at 104 months as compared to 12 months only in AS+AR group (p = 0,013), but patients in AS group walked longer at 12 months than patients in AS+AR group (p = 0,002). There were 30 deaths during study period, of which 13 (10 due to cardiovascular causes) in AS group and 17 (12 due to cardiovascular causes) in AS+AR group. Kaplan-Meier analysis showed that the survival probability was similar between the groups. Multivariate analysis identified diabetes mellitus (beta 1.78, p = 0.038) and LVEF < 45% (beta 1.92, p = 0.049) as the only independent predictor of long-term mortality.</p> <p>Conclusion</p> <p>Our data indicate that the preoperative presence and severity of concomitant AR has no influence on long-term postoperative outcome, LV function and functional capacity in patients undergoing AVR for severe AS.</p

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on in vitro mineralisation and in vivo bone tissue integration

    Get PDF
    This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseointegration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS ) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-tobone contact and bone formation in the core of the ligament at the later time point than the nongrafted specimens, the grafting also significantly reduced thefibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.Programme ANR LIGAR

    The DAily Home LIfe Activity Dataset: A High Semantic Activity Dataset for Online Recognition

    No full text
    Conference of 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 ; Conference Date: 30 May 2017 Through 3 June 2017; Conference Code:128713International audienceIn this article, we introduce the DAily Home LIfe Activity (DAHLIA) Dataset, a new dataset adapted to the context of smart-home or video-assistance. Videos were recorded in realistic conditions, with 3 KinectTMv2 sensors located as they would be in a real context. The very long-range activities were performed in an unconstrained way (participants received few instructions), and in a continuous (untrimmed) sequence, resulting in long videos (39 min in average per subject). Contrary to previously published databases, in which labeled actions are very short and with low-semantic level, this new database focuses on high-level semantic activities such as 'Preparing lunch' or 'House Working'. As a baseline, we evaluated several metrics on three different algorithms designed for online action recognition or detection

    Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties

    No full text
    Precise interface engineering in inorganic–organic hybrid materials enhances both the elastic moduli and toughness of a biodegradable composite, which is of relevance for load-bearing applications in bone tissue engineering. Tailor-made MgF2-binding peptide–polymer conjugates (MBC) are utilized as precision compatibilizers, having sequence-specific affinity for the surfaces of the inorganic MgF2 fillers to stabilize these particles and to contribute to the interactions with the continuous polymer matrix. The effects of the coupling agents are investigated in additively biomanufactured scaffolds from composites composed of MBC compatibilized magnesium fluoride nanoparticles (cMgF2) and poly(ε-caprolactone). Mechanical properties, degradation behavior, ion release kinetics and in vitro cell viability are positively influenced by the presence of the compatibilized nanoparticles cMgF2 compared to pure, non-compatibilized MgF2 (pMgF2). Mechanical tensile, compression and indentation experiments with single filaments as well as with scaffolds a reveal strong improvement of both elastic moduli and material toughness

    Zeta-potential and morphology of electrospun nano- and microfibers from biopolymers and their blends used as scaffolds in tissue engineering

    No full text
    Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines
    corecore