61 research outputs found

    Does the cis/trans configuration of peptide bonds in bioactive tripeptides play a role in ACE-1 enzyme inhibition?

    No full text
    Aino Siltari,1 Riikka Viitanen,2 Sampo Kukkurainen,2 Heikki Vapaatalo,1 Jarkko Valjakka2 1Institute of Biomedicine, Pharmacology, University of Helsinki, Finland; 2BioMediTech, Institute of Biomedical Technology, University of Tampere, Finland Background: The milk casein-derived bioactive tripeptides isoleucine-proline-proline (IPP) and valine-proline-proline (VPP) have been shown to prevent development of hypertension in animal models and to lower blood pressure in moderately hypertensive subjects in most but not all clinical trials. Inhibition of angiotensin-converting enzyme 1 (ACE-1) has been suggested as the explanation for these antihypertensive and beneficial vascular effects. Previously, human umbilical vein endothelial cells (HUVEC) have not been used to test ACE-1 inhibiting properties of casein derived tripeptides in vasculature. Purpose: We focused on the cis/trans configurations of the peptide bonds in proline-containing tripeptides in order to discover whether the different structural properties of these peptides influence their activity in ACE-1 inhibition. We hypothesized that the configuration of proline-containing peptides plays a significant role in enzyme inhibition. Methods: AutoDock 4.2 docking software was used to predict suitable peptide bond configurations of the tripeptides. Besides modeling studies, we completed ACE-1 activity measurements in vitro using HUVEC cultures. Results: In HUVEC cells, both IPP and VPP inhibited ACE-1. Based on molecular docking studies, we propose that in ACE-1 inhibition IPP and VPP share a similar cis configuration between the first aliphatic (isoleucine or valine) and the second (proline) amino acid residues and more different configurations between two proline residues. In vivo experiments are needed to validate the significance of the present findings. Keywords: ACE inhibition, Autodock modeling, Ile-Pro-Pro, Val-Pro-Pro, vascular functio

    Magnesium supplementation prevents angiotensin II-induced myocardial damage and CTGF overexpression

    No full text
    OBJECTIVES AND DESIGN: Magnesium deficiency promotes vasoconstriction and myocardial damage. Recent studies provide evidence that Ang II mobilizes intracellular Mg through AT1 receptor-mediated pathways. We tested the hypothesis of whether magnesium supplementation prevents Ang II-induced myocardial damage and induction of the profibrotic connective tissue growth factor (CTGF). METHODS: Four-week-old double transgenic rats harboring human renin and angiotensinogen genes (dTGR) were given dietary magnesium supplementation (0.6%) for 3 weeks. Control dTGR and normotensive Sprague-Dawley (SD) rats received normal diet (Mg 0.2%). Histopathological, immunohistochemical and mRNA analysis were used to detect the treatment-related effects of dietary magnesium in dTGR. RESULTS: Magnesium (Mg) supplementation decreased blood pressure, ameliorated cardiac hypertrophy, protected against the development of Ang II-induced myocardial damage and increased serum ionized Mg2+ concentration (all variables P < 0.05). There was no difference in serum ionized Mg2+ concentration between dTGR and SD rats. Myocardial connective tissue growth factor (CTGF) mRNA and protein expressions were increased by 300% in dTGR (P < 0.05), especially in areas with myocardial infarctions and vascular inflammation. Magnesium supplementation prevented Ang II-induced myocardial CTGF overexpression (P < 0.05). Magnesium supplementation also improved the therapeutic effects of the calcineurin inhibitor tacrolimus, which produced marked hypomagnesemia when given as monotherapy. CONCLUSION: Our findings suggest a salutary effect for magnesium supplementation in the treatment of Ang II-induced myocardial complications
    • …
    corecore