24 research outputs found

    Happy Feet in a Hostile World? The Future of Penguins Depends on Proactive Management of Current and Expected Threats

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordPenguins face a wide range of threats. Most observed population changes have been negative and have happened over the last 60 years. Today, populations of 11 penguin species are decreasing. Here we present a review that synthesizes details of threats faced by the world's 18 species of penguins. We discuss alterations to their environment at both breeding sites on land and at sea where they forage. The major drivers of change appear to be climate, and food web alterations by marine fisheries. In addition, we also consider other critical and/or emerging threats, namely human disturbance near nesting sites, pollution due to oil, plastics and chemicals such as mercury and persistent organic compounds. Finally, we assess the importance of emerging pathogens and diseases on the health of penguins. We suggest that in the context of climate change, habitat degradation, introduced exotic species and resource competition with fisheries, successful conservation outcomes will require new and unprecedented levels of science and advocacy. Successful conservation stories of penguin species across their geographical range have occurred where there has been concerted effort across local, national and international boundaries to implement effective conservation planning.WWF-UKPEW FoundationNational Science Foundation (NSF

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    Get PDF
    Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load. Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests. Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates

    Host Specialization and Dispersal in Avian Haemosporidians

    Get PDF
    In order to be able to understand the ecological and evolutionary processes involved in the emergence of infectious diseases, one needs to comprehend how parasites arrive at new geographical areas and how they manage to maintain viable populations and even expand their ranges. We discuss host specificity in avian haemosporidians and how encounter and compatibility filters affect the dispersal of avian haemosporidians, and how these filters affect avian haemosporidian assemblages at different spatial and evolutionary scales. There are at least three important barriers to the dispersal of avian haemosporidians: (i) geographic barriers, (ii) environmental barriers, and (iii) interspecies barriers. In this chapter, we discuss the factors involved in these barriers and their effects on the structure of avian haemosporidian assemblages. Host specificity plays an important role in parasite dispersal, and in the case of avian haemosporidians that are vector-borne parasites, it needs to be evaluated both at the vector and bird host levels. Understanding the effects of these factors on host–vector–parasite dynamics is important to unravel the dispersal and diversification mechanisms of avian haemosporidians. We end this chapter reviewing host specialization in avian haemosporidians of tropical regions, discussing the mechanisms involved in the dispersal and specialization of these parasites and point out important research gaps that need attention

    Lesions associated with drowning in bycaught penguins

    No full text

    SURVEILLANCE FOR NEWCASTLE DISEASE VIRUS, AVIAN INFLUENZA VIRUS AND MYCOPLASMA GALLISEPTICUM IN WILD BIRDS NEAR COMMERCIAL POULTRY FARMS SURROUNDED BY ATLANTIC RAINFOREST REMNANTS, SOUTHEASTERN BRAZIL

    No full text
    ABSTRACT The geographic overlap between areas of Atlantic rainforest and human activities allows interactions to occur between humans and wild and domestic animals. Despite the great importance of the domestic animal-wildlife-human interface that occurs at poultry farms in terms of public health, economic production and wildlife conservation, there are few studies in Brazil examining the distribution and health of wild birds that interact with poultry farms. From January to December 2010, mist nets were used to capture 166 free-ranging birds that were within close proximity to three poultry farms in Atlantic rainforest remnants in south-eastern Brazil. The species composition was examined, and molecular methods were used to test for avian influenza virus, Newcastle disease virus, and Mycoplasma gallisepticum. The avian communities near the poultry farms were dominated by three synanthropic species, which corresponded to 70% of all captured individuals: house sparrows Passer domesticus (33%), saffron finches (Sicalis flaveola) (22%), and ruddy ground-doves (Columbina talpacoti) (15%). These predominant bird species were in poor body condition (27%), were infested with feather mites (43%), or presented both conditions (23%). No evidence of infection by avian influenza virus, Newcastle disease virus or M. gallisepticum was identified in any of the studied birds. Although no evidence of the studied pathogens was, our findings demonstrate that differences in the environmental characteristics and biosecurity practices influence the wild bird community near poultry farms, which in turn may affect the health status of these synanthropic birds and strengthen their role in the transmission of pathogens
    corecore