41 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Le microbiote des plantes clonales : règles d'assemblage, héritabilité et influence sur le phénotype de l'hôte

    No full text
    Plants live in association with a wide diversity of microorganisms forming the microbiota. The plant microbiota provides a variety of key functions that influence many aspects of plant's life comprising establishment, growth and reproduction. The present thesis aims at determining the assembly rules of the plant microbiota and its consequences for plant phenotype, adaptation and evolution. To fulfill this objective, we used different experimental approaches using either clonal plants as model organisms or grassland mesocosms for community-wide analyses. Our results demonstrated i) that Arbuscular Mycorrhizal Fungi induce important phenotypic variations in clonal plants traits involved in space exploration and resources exploitation. These changes depended on the identity of the symbionts and altered the plants ability to produce plastic responses to environmental heterogeneity. ii) Plants have evolved a mechanism allowing the transmission of a part of their microbiota to their progeny, ensuring thus their habitat quality. iii) The plant community context is a major factor structuring local plant microbiota assembly. Particular plant species identity in the neighborhood increase or decrease the microbiota diversity and ultimately determine the focal plant performance. This thesis overall demonstrates the importance of symbiotic microorganisms in the understanding of the plant adaptation and evolution. From the knowledges acquired we developed a novel understanding of symbiotic interactions in clonal plants by extending the holobiont theory to the meta-holobiont theory.Les plantes vivent en association avec une grande diversité de microorganismes qui forment son microbiota. Ce microbiote fournit des fonctions clés qui influencent tous les aspects de la vie d'une plante, de l'établissement à la croissance jusqu'à la production. Cette thèse a pour intention de déterminer les règlent d'assemblage du microbiote et ses conséquences pour le phénotypel l'adaptation et l'évolution des plantes. Pour atteindre cet objectif nous avont utilisé différentes approches expérimentales comprenant des plantes clonales comme organismes modèles ainsi que des mésocosmes prairiaux pour analyses à l'échelle des communautés. Nos résultats ont démontré i) que les Champignons Mycohiziens à Arbuscules induisent d'important es variations phénotypiques pour les traits des plantes clonales impliqués dans l'exploration de l'espace et l'exploitation des ressources. Ces changements dépendent de l'identité des symbiontes et altèrent les capacités des plantes à développer des réponses plastiques à l'hétérogénéité environnementale. ii) Les plantes ont évolué un méchanisme permettant la transmission d'une partie de leur microbiote a leur descendance, assurant la qualité de leur habitat. iii) Le contexte spécifique des communautés de plantes est un facteur majeur structurant l'assemblage du microbiota des plantes à échelle locale. L'abondance de certaines espèces de plante dans le voisinage d'une plante cible augmente ou diminue la diversité de son microbiote, déterminant in fine ses performances. De manière générale, cette thèse démontre l'importance des organismes symbiotiques dans la compréhension de l'adaptation et de l'évolution des plantes

    Le microbiote des plantes clonales : règles d'assemblage, héritabilité et influence sur le phénotype de l'hôte

    No full text
    Plants live in association with a wide diversity of microorganisms forming the microbiota. The plant microbiota provides a variety of key functions that influence many aspects of plant's life comprising establishment, growth and reproduction. The present thesis aims at determining the assembly rules of the plant microbiota and its consequences for plant phenotype, adaptation and evolution. To fulfill this objective, we used different experimental approaches using either clonal plants as model organisms or grassland mesocosms for community-wide analyses. Our results demonstrated i) that Arbuscular Mycorrhizal Fungi induce important phenotypic variations in clonal plants traits involved in space exploration and resources exploitation. These changes depended on the identity of the symbionts and altered the plants ability to produce plastic responses to environmental heterogeneity. ii) Plants have evolved a mechanism allowing the transmission of a part of their microbiota to their progeny, ensuring thus their habitat quality. iii) The plant community context is a major factor structuring local plant microbiota assembly. Particular plant species identity in the neighborhood increase or decrease the microbiota diversity and ultimately determine the focal plant performance. This thesis overall demonstrates the importance of symbiotic microorganisms in the understanding of the plant adaptation and evolution. From the knowledges acquired we developed a novel understanding of symbiotic interactions in clonal plants by extending the holobiont theory to the meta-holobiont theory.Les plantes vivent en association avec une grande diversité de microorganismes qui forment son microbiota. Ce microbiote fournit des fonctions clés qui influencent tous les aspects de la vie d'une plante, de l'établissement à la croissance jusqu'à la production. Cette thèse a pour intention de déterminer les règlent d'assemblage du microbiote et ses conséquences pour le phénotypel l'adaptation et l'évolution des plantes. Pour atteindre cet objectif nous avont utilisé différentes approches expérimentales comprenant des plantes clonales comme organismes modèles ainsi que des mésocosmes prairiaux pour analyses à l'échelle des communautés. Nos résultats ont démontré i) que les Champignons Mycohiziens à Arbuscules induisent d'important es variations phénotypiques pour les traits des plantes clonales impliqués dans l'exploration de l'espace et l'exploitation des ressources. Ces changements dépendent de l'identité des symbiontes et altèrent les capacités des plantes à développer des réponses plastiques à l'hétérogénéité environnementale. ii) Les plantes ont évolué un méchanisme permettant la transmission d'une partie de leur microbiote a leur descendance, assurant la qualité de leur habitat. iii) Le contexte spécifique des communautés de plantes est un facteur majeur structurant l'assemblage du microbiota des plantes à échelle locale. L'abondance de certaines espèces de plante dans le voisinage d'une plante cible augmente ou diminue la diversité de son microbiote, déterminant in fine ses performances. De manière générale, cette thèse démontre l'importance des organismes symbiotiques dans la compréhension de l'adaptation et de l'évolution des plantes

    Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes

    Get PDF
    International audienceUnderstanding how microorganism-microorganism interactions shape microbial assemblages is a key to deciphering the evolution of dependencies and co-existence in complex microbiomes. Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially determine microbial community composition. To parry the complexity and experimental limitations caused by the large number of possible interactions, new concepts from systems biology aim to decipher how the components of a system interact with each other. The idea that cross-feeding does impact microbiome assemblages has developed both theoretically and empirically, following a systems biology framework applied to microbial communities, formalized as microbial systems ecology (MSE) and relying on integrated-omics data. This framework merges cellular and community scales and offers new avenues to untangle microbial coexistence primarily by metabolic modeling, one of the main approaches used for mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-feeding. We then discuss how MSE can enable progress in microbial research. Finally, we provide an overview of a MSE framework mostly based on genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches to assess the molecular mechanisms of deterministic processes of microbial community assembly that is particularly suitable for use in synthetic biology and microbiome engineering

    Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome

    No full text
    International audienceBackground: From a theoretical ecology point of view, microbiomes are far more complex than expected. Besides competition and competitive exclusion, cooperative microbe-microbe interactions have to be carefully considered. Metabolic dependencies among microbes likely explain co-existence in microbiota. Methodology: In this in silico study, we explored genome-scale metabolic models (GEMs) of 193 bacteria isolated from Arabidopsis thaliana roots. We analyzed their predicted producible metabolites under simulated nutritional constraints including "root exudate-mimicking growth media " and assessed the potential of putative metabolic exchanges of by- and end-products to avoid those constraints. Results: We found that the genome-encoded metabolic potential is quantitatively and qualitatively clustered by phylogeny, highlighting metabolic differentiation between taxonomic groups. Random, synthetic combinations of increasing numbers of strains (SynComs) indicated that the number of producible compounds by GEMs increased with average phylogenetic distance, but that most SynComs were centered around an optimal phylogenetic distance. Moreover, relatively small SynComs could reflect the capacity of the whole community due to metabolic redundancy. Inspection of 30 specific end-product metabolites (i.e., target metabolites: amino acids, vitamins, phytohormones) indicated that the majority of the strains had the genetic potential to produce almost all the targeted compounds. Their production was predicted (1) to depend on external nutritional constraints and (2) to be facilitated by nutritional constraints mimicking root exudates, suggesting nutrient availability and root exudates play a key role in determining the number of producible metabolites. An answer set programming solver enabled the identification of numerous combinations of strains predicted to depend on each other to produce these targeted compounds under severe nutritional constraints thus indicating a putative sub-community level of functional redundancy. Conclusions: This study predicts metabolic restrictions caused by available nutrients in the environment. By extension, it highlights the importance of the environment for niche potential, realization, partitioning, and overlap. Our results also suggest that metabolic dependencies and cooperation among root microbiota members compensate for environmental constraints and help maintain co-existence in complex microbial communities

    Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales

    No full text
    International audiencePlant roots are inhabited by a diversity of microorganisms known to be key drivers of plant growth and health. Although the rules governing root microbiota assembly have been investigated and the importance of abiotic determinants highlighted, the consequences of the biotic context of the plant community have often been overlooked. We tested the hypothesis that the abundance of species in a given plant neighborhood could leave a fingerprint on its root-endophytic fungal community, ultimately impacting its biomass. Outdoor experimental mesocosms, comprising a range of floristic compositions and spatially mapped plant distributions, were monitored for 2y. Medicago truncatula was used as trap-plant and grown under standardized conditions on soil samples collected in the mesocosms. The root-endophytic fungal community of M. truncatula was described by amplicon mass sequencing and M. truncatula performance was also assessed. The richness and evenness of M. truncatula's root-endophytic fungal community were explained by the small-scale plant neighborhood of the soil samples. For instance, the occurrence of Brachypodium pinnatum in the neighborhood induced higher and lower richness of Sordariomycetes and Glomeromycetes, respectively, whereas Holcus mollis decreased the OTU evenness of the entire mycobiota. These changes in fungal Glade OTU richness and evenness were related to modifications in the biomass of M. truncatula. These results indicate that a given plant endophytic fungal community is determined in part by the neighboring plants. Considering that changes in endophytic fungal community are correlated with the plant biomass, this suggests that plant-plant interactions (i.e. competition, facilitation) impacting plant biomass can be mediated by endophytic fungal community changes

    Epigenetic Mechanisms and Microbiota as a Toolbox for Plant Phenotypic Adjustment to Environment

    Get PDF
    International audienceThe classic understanding of organisms focuses on genes as the main source of species evolution and diversification. The recent concept of genetic accommodation questions this gene centric view by emphasizing the importance of phenotypic plasticity on evolutionary trajectories. Recent discoveries on epigenetics and symbiotic microbiota demonstrated their deep impact on plant survival, adaptation and evolution thus suggesting a novel comprehension of the plant phenotype. In addition, interplays between these two phenomena controlling plant plasticity can be suggested. Because epigenetic and plant-associated (micro-) organisms are both key sources of phenotypic variation allowing environmental adjustments, we argue that they must be considered in terms of evolution. This ‘non-conventional’ set of mediators of phenotypic variation can be seen as a toolbox for plant adaptation to environment over short, medium and long time-scale
    corecore