32 research outputs found

    Ether lipids and a peroxisomal riddle in sperm

    Get PDF
    Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.Fil: Horta Remedios, Mayrene. University of Calgary; CanadáFil: Liang, Weisheng. University of Calgary; CanadáFil: González, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Li, Victoria. University of Calgary; CanadáFil: Da Ros, Vanina Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Cohen, Debora Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Zaremberg, Vanina. University of Calgary; Canad

    Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution

    Get PDF
    Actively maintained close appositions, or contact sites, between organelle membranes, enable the efficient transfer of biomolecules between the various cellular compartments. Several such sites have been described together with their tethering machinery. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize the proteome of contact sites and support the discovery of new tethers and functional molecules, we established a high throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, two of which have never been studied before, on the background of 1165 strains expressing a mCherry-tagged yeast protein that have a cellular punctate distribution (a hallmark of contact sites). By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified one set of hits as previously unrecognized homologs to Vps13 and Atg2. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell

    Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution

    Get PDF
    Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators

    Study of the mechanism of activation of cAMP dependent protein kinase

    No full text
    El objetivo general de esta tesis es contribuir al estudio del mecanismo de activación de las proteinas quinasas dependientes de cAMP (PK A). Algunos de los grandes problemas a dilucidar en este tema son: si la enzima necesita disociarse en sus subunidades catalltica y regulatoria para activarse por cAMP , si el cAMP es el único agente necesario para la activación de la enzima y cómo se adquiere la selectividad de sustratos. Para este trabajo se han utilizado como modelos dos eucariontes inferiores. 1) PKA parcialmente purificada del hongo dimórflco Mucor rouxii, y ensayos in vitro. 2) Mutantes de subunidad regulatoria (bcy1) de la PKA de la levadura Saccharomyces cerevisiae con un abordaje genético-bioquímico-molecular. Utilizando el primer modelo y trabajando a concentraciones de holoenzima del orden de nM hemos llegado a las siguientes conclusiones (Mechanism of activation of cAMP-dependent protein kinase. In Mucor rouxii the apparont specific activity of the CAMP activated holoenzyme is different to that of its free catalytic subunit”. V.Zaremberg, A.Donnella-Deana and S.Moreno. Enviado a Archives in Biochemistry and Biophysics). - en este rango de concentración la actividad enzimática utilizando péptidos sintéticos como sustratos no es lineal con la concentración de enzima. Con la proteina protamina, utilizada como referencia, la actividad es casi lineal en el mismo rango de concentración. - la dependencia de la actividad fosforilante de cada péptido, con el cAMP, el grado de inhibición por un péptido inhibidor especifico y la modulación por policationes dependen del péptido utilizado. - en todos los ensayos arriba mencionados la relación de las actividades fosforilantes de la enzima con los distintos péptidos, comparados entre si o con la protamina, es diferente a la misma relación estimada a partir de las actividades medidas con la subunidad catalitica libre. Estos resultados se explican con dos modelos posibles: a) la subunidad catalitica libre es la entidad que fosforila los sustratos y el nivel de producción de subunidad C depende del cAMP y del sustrato; b) a altas concentraciones de holoenzima, existe holoenzima sin disociar con cAMP unido; esta especie es cataliticamente activa y la selectividad de esta especie por los sustratos es diferente a la de la subunidad catalitica libre. En el segundo modelo se han utilizado mutantes espontáneas, cedidas por el Dr. Kelly Tatchell, en el gen que codifica para la subunidad regulatoria (bcy1) de la PKA. En un primer trabajo (Analysis of the mechanism of activation of cAMPdependent protein kinase through the study of mutants of the yeast regulatory subunit. ” V.Zaremberg and S.Moreno, Eur.J.Biochem. 237: 136-142, 1996) trabajando con las cepas mutantes se obtuvieron los siguientes resultados: - los niveles de las subunidades regulatoria ( R) y catalltica (C ) en las cepas mutadas son similares a los de la cepa salvaje. - Una medida aproximada de la afinidad de las subunidades R mutadas por el CAMP, indicó que se encuentra disminuida. - Midiendoactividad de PKA en células penneadas en ausencia y presencia de cAMP, se encontró que las mutantes demuestran actividad dependiente de cAMP,aunque tienen una actividad basal elevada. - Los fenotipos se hicieron más severos si el fondo genético de las levaduras era RAS2; y permanecieron iguales por sobreexpresión del gen para PDE2. En la tercera parte de la tesis, y utilizando el mismo modelo de S.cerevisiae se encaró la sobreexpresión de algunas de las mutantes bcy1: construcción de los vectores correspondientes, estudio de la sobreexpresión y análisis de los fenotipos resultantes. El conjunto de estos resultados (manuscrito en preparación) confirma la conclusión que obtuviéramos en la primera parte: las holoenzimas mutadas tienen actividad enzimática. Del conjunto de los resultados genético-bioquímicos obtenidos hasta ahora en el sistema de las mutantes de levadura hemos concluido, que las holoenzimas mutadas tienen actividad fosforilante de proteinas sin necesidad de disociarse en sus subunidades, que la capacidad fosforilante de proteinas es diferente para cada mutante (diferentes fenotipos) y proponemos que los cambios conformacionales producidos por las mutaciones pueden ser similares a los introducidos por el cAMP al interactuar con la holoenzima

    Alteration of plasma membrane organization by an anticancer lysophosphatidylcholine analogue induces intracellular acidification and internalization of plasma membrane transporters in yeast

    Get PDF
    The lysophosphatidylcholine analogue edelfosine is a potent antitumor lipid that targets cellular membranes. The underlying mechanisms leading to cell death remain controversial, although two cellular membranes have emerged as primary targets of edelfosine, the plasma membrane (PM) and the endoplasmic reticulum. In an effort to identify conditions that enhance or prevent the cytotoxic effect of edelfosine, we have conducted genome-wide surveys of edelfosine sensitivity and resistance in Saccharomyces cerevisiae presented in this work and the accompanying paper (Cuesta-Marbán, Á., Botet, J., Czyz, O., Cacharro, L. M., Gajate, C., Hornillos, V., Delgado, J., Zhang, H., Amat-Guerri, F., Acuña, A. U., McMaster, C. R., Revuelta, J. L., Zaremberg, V., and Mollinedo, F. (January 23, 2013) J. Biol. Chem. 288,), respectively. Our results point to maintenance of pH homeostasis as a major player in modulating susceptibility to edelfosine with the PM proton pump Pma1p playing a main role. We demonstrate that edelfosine alters PM organization and induces intracellular acidification. Significantly, we show that edelfosine selectively reduces lateral segregation of PM proteins like Pma1p and nutrient H+-symporters inducing their ubiquitination and internalization. The biology associated to the mode of action of edelfosine we have unveiled includes selective modification of lipid raft integrity altering pH homeostasis, which in turn regulates cell growth. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.This work was supported in part by a Natural Sciences and Engineering Research Council of Canada discovery grant, a seed grant from the University of Calgary, a Natural Sciences and Engineering Research Council of Canada University Faculty award (to V. Z.), Canadian Institutes of Health Research Grant 14124 (to C. R. M.), Spanish Ministerio de Economia y Competitividad Grants SAF2008-02251 and SAF2011-30518, Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, co-funded by the Fondo Europeo de Desarrollo Regional of the European Union Grants RD06/0020/1037 and RD12/0036/0065, European Community's Seventh Framework Programme FP7-2007-2013 Grant HEALTH-F2-2011-256986, (PANACREAS), and Junta de Castilla y León Grants CSI052A11-2 and CSI221A12-2 (to F. M.).Peer Reviewe

    The yeast oxysterol binding protein Kes1 maintains sphingolipid levels.

    Get PDF
    The oxysterol binding protein family are amphitropic proteins that bind oxysterols, sterols, and possibly phosphoinositides, in a conserved binding pocket. The Saccharomyces cerevisiae oxysterol binding protein family member Kes1 (also known as Osh4) also binds phosphoinositides on a distinct surface of the protein from the conserved binding pocket. In this study, we determine that the oxysterol binding protein family member Kes1 is required to maintain the ratio of complex sphingolipids and levels of ceramide, sphingosine-phosphate and sphingosine. This inability to maintain normal sphingolipid homeostasis resulted in misdistribution of Pma1, a protein that requires normal sphingolipid synthesis to occur to partition into membrane rafts at the Golgi for its trafficking to the plasma membrane

    Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast

    No full text
    The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short–medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol

    Glycerol-3-Phosphate Acyltransferases Gat1p and Gat2p Are Microsomal Phosphoproteins with Differential Contributions to Polarized Cell Growth▿ †

    No full text
    Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial step in the synthesis of all glycerolipids. It is the committed and rate-limiting step and is redundant in Saccharomyces cerevisiae, mammals, and plants. GPAT controls the formation of lipid intermediates that serve not only as precursors of more-complex lipids but also as intracellular signaling molecules. Saccharomyces cerevisiae possesses two GPATs, encoded by the GAT1 and GAT2 genes. Metabolic analysis of yeast lacking either GAT1 or GAT2 indicated partitioning of the two main branches of phospholipid synthesis at the initial and rate-limiting GPAT step. We are particularly interested in identifying molecular determinants mediating lipid metabolic pathway partitioning; therefore, as a starting point, we have performed a detailed study of Gat1p and Gat2p cellular localization. We have compared Gat1p and Gat2p localization by fluorescence microscopy and subcellular fractionation using equilibrium density gradients. Our results indicate Gat1p and Gat2p overlap mostly in their localization and are in fact microsomal GPATs, localized to both perinuclear and cortical endoplasmic reticula in actively proliferating cells. A more detailed analysis suggests a differential enrichment of Gat1p and Gat2p in distinct ER fractions. Furthermore, overexpression of these enzymes in the absence of endogenous GPATs induces proliferation of distinct ER arrays, differentially affecting cortical ER morphology and polarized cell growth. In addition, our studies also uncovered a dynamic posttranslational regulation of Gat1p and Gat2p and a compensation mechanism through phosphorylation that responds to a cellular GPAT imbalance

    Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening

    Get PDF
    The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits.Fil: Pautasso, María Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Reca, Sol Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Chatfield Reed, Kate. University of Calgary; CanadáFil: Chua, Gordon. University of Calgary; CanadáFil: Galello, Fiorella Ariadna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Portela, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Zaremberg, Vanina. University of Calgary; CanadáFil: Rossi, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin
    corecore