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Sperm are terminally differentiated cells that lack most of the membranous
organelles, resulting in a high abundance of ether glycerolipids found across
different species. Ether lipids include plasmalogens, platelet activating factor, GPI-
anchors and seminolipid. These lipids play important roles in sperm function and
performance, and thus are of special interest as potential fertility markers and
therapeutic targets. In the present article, we first review the existing knowledge
on the relevance of the different types of ether lipids for sperm production,
maturation and function. To further understand ether-lipid metabolism in sperm,
we then query available proteomic data from highly purified sperm, and produce a
map ofmetabolic steps retained in these cells. Our analysis pinpoints the presence
of a truncated ether lipid biosynthetic pathway that would be competent for the
production of precursors through the initial peroxisomal core steps, but devoid of
subsequent microsomal enzymes responsible for the final synthesis of all complex
ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the
thorough analysis of published data conducted herein identifies nearly 70% of all
known peroxisomal resident proteins as part of the sperm proteome. In view of
this, we highlight open questions related to lipid metabolism and possible
peroxisomal functions in sperm. We propose a repurposed role for the
truncated peroxisomal ether-lipid pathway in detoxification of products from
oxidative stress, which is known to critically influence sperm function. The likely
presence of a peroxisomal-derived remnant compartment that could act as a sink
for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is
discussed. With this perspective, our review provides a comprehensive metabolic
map associated with ether-lipids and peroxisomal-related functions in sperm and
offers new insights into potentially relevant antioxidant mechanisms that warrant
further research.

KEYWORDS

sperm, ether lipid, peroxisome, metabolism, oxidative stress, fertility

Introduction

Sperm are terminally differentiated haploid cells with a unique structure necessary
for the different stages of fertilization and early embryonic development. To achieve
fertilization, sperm leaving the testis must first undergo a series of physiological changes
in the epididymis and the female tract, known as maturation and capacitation,
respectively (Yanagimachi, 1994). As a consequence of these processes, sperm
become able to undergo the acrosome reaction, an exocytotic event that takes place
in their head, and to develop a specific flagellar movement termed hyperactivation.
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These physiological changes enable sperm to cross the cumulus
oophorus that surrounds the egg, then bind to and penetrate the
zona pellucida, and finally fuse with the egg’s plasma membrane
(Figure 1). In this regard, it is important to mention that, since
sperm are transcriptionally and translationally silent cells, signal
transduction cascades and metabolic pathways, among others,
are essential for the regulation of the changes conducive to
fertilization. Moreover, sperm function is critically influenced
by reactive oxygen species (ROS) mainly derived from aerobic
metabolism in the mitochondria. Small quantities of ROS are
needed for normal sperm function, stimulating both sperm
capacitation and fertilization reviewed by O’Flaherty and
Scarlata (2022). However, high levels of ROS induce an
oxidative stress state that has a detrimental effect on sperm
motility, capacitation, acrosome reaction and DNA integrity,
leading to male infertility reviewed by Aitken et al., (2022). As
terminally differentiated cells, sperm are particularly vulnerable
to ROS attack. Since the late 70’s, evidence has been accumulating
showing the critical role of lipid peroxidation in both combating
and propagating this damage (Jones and Mann, 1976; Aitken
et al., 1989; Gomez et al., 1998; Aitken and Baker, 2006).
Therefore, a delicate balance between ROS production and
antioxidant mechanisms should exist in normal sperm to
ensure sperm survival for successful fertilization.

As a result of several studies focusing on the evaluation of
sperm lipid composition, increased attention has been given to the
relationship between sperm lipid composition and fertility
(Rivera-Egea et al., 2018; Lopalco et al., 2019). Thus, lipids are
of special interest as potential fertility markers and therapeutic
targets not only because of their structural functions in sperm, but
also because they are sensitive to external and environmental
signals, many of which can be recreated in vitro. Ether lipids
are a particularly highly abundant subclass of
glycerophospholipids found in sperm of different species, such
as humans, boars, stallions, bulls, and lions (Parks and Lynch,
1992; Leßig et al., 2004; Oresti et al., 2011; Jakop et al., 2022),
suggesting they play a critical role in sperm physiology. In other
cell types, ether lipids are key components of cell membranes,
providing unique structural attributes with effects on membrane
dynamics, including membrane fluidity and membrane fusion,
facilitating signaling processes, regulating cell differentiation, and
protecting membranes from oxidation by acting as potential
endogenous antioxidants reviewed by Dean and Lodhi, (2018),
Jiménez-Rojo and Riezman, (2019). Structurally, ether-
phospholipids are characterized by the presence of an ether
bond at the sn-1 position of the glycerol backbone (Figure 2).
Lipids with distinctive ether linkages may be categorized into a
variety of subspecies that include: a) plasmanyl and plasmenyl

FIGURE 1
Schematic representation of the different steps involved in sperm production, maturation, and fertilization. The described roles for the different
types of ether lipids in these steps are included in the table. Abbreviations: AR, acrosomal reaction; PLs, phospholipids; PAF, platelet activating factor; SGG,
sulfogalactosylglycerolipid; GPI, glycosylphosphatidylinositol.
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(plasmalogens) glycerophospholipids that compose approximately
20% of the mammalian total phospholipid pool (Dean and Lodhi,
2018), b) platelet-activating factor (PAF) that mediates
inflammatory responses (Kelesidis et al., 2015), c)
glycosylphosphatidylinositol (GPI) anchors, a lipid anchor for
many cell-surface proteins added via posttranslational
modifications (Kinoshita, 2016), and d)
sulfogalactosylglycerolipid (SGG), also known as seminolipid,
which is a testis-specific sulfoglycolipid essential for germ cell
function in spermatogenesis (Zhang et al., 2005) (Figure 2). It is
not clear when and where this array of ether lipids present in sperm
is synthesized. The enzymes responsible for the initial steps in the
synthesis of ether lipids are localized to the peroxisome where the
alkyl precursor, 1-alkyl-glycerol-3-phosphate (1-alkyl-G3P), is
made, and then is transported to the endoplasmic reticulum
(ER) and Golgi, where it is consumed to produce complex ether
lipids. It is currently accepted that sperm are devoid of these
organelles, as these are lost with the residual body and cytoplasmic
droplet during spermiogenesis and epididymal maturation, along
with other membranous organelles such as lysosomes (Aveldano
et al., 1992; Lüers et al., 2006), precluding the idea that they can
synthesize ether lipids for themselves. As such, the source of ether
lipids in spermmay be linked to early stages of the spermatogenesis
or to acquisition during epididymal transit, particularly since the
incorporation of exogenous phospholipids is possible through
extracellular vesicles such as epididymosomes (Sullivan and
Saez, 2013). Intriguingly, reports on sperm proteomes from
different species have consistently identified peroxisomal

resident proteins, including the enzymes involved in the
production of ether lipids (Chauvin et al., 2012; Amaral et al.,
2013; 2014; Castillo et al., 2018; Martín-Cano et al., 2020; Greither
et al., 2023). Therefore, sperm seem to preserve selected
peroxisomal pathways relevant for lipid metabolism. Here, we
first summarize existing knowledge on the biological significance
of ether lipid species plasmanyl and plasmenyl
glycerophospholipids, PAF, SGG and GPI, particularly
regarding sperm maturation and fertilization and their impact
on male fertility and sperm performance. Using published data
from highly purified human and mice sperm, we then embark in a
thorough analysis of the sperm proteome identifying peroxisomal
resident proteins and ether-lipid metabolic enzymes. This analysis
unveils the presence of a truncated biosynthetic pathway where
peroxisomal steps capable of producing ether lipid precursors are
present, while late ER/Golgi steps are missing. Lastly, we discuss
open questions related to lipid metabolism and peroxisomal
functions in sperm, which require further research to be answered.

Ether lipids in the male reproductive system
and in sperm

The vast majority of reports on ether lipids in the male
reproductive system and sperm date back from two decades ago.
The relatively recent identification of genes coding for all the
enzymes involved in the biosynthesis of ether lipids (Dean and
Lodhi, 2018), combined with powerful techniques using proteomics

FIGURE 2
Chemical structures of ether and diacyl glycerophospholipids and their precursors. The acyl precursor of diacyl phospholipids, 1-acyl-G3P (also
known as lysophosphatidic acid) is shown for comparison. This precursor is mainly made in the endoplasmic reticulum. Blue box points to the ester bond
at the sn-1 position of the glycerol backbone (A). The precursor of all ether lipids is 1-alkyl-glycerol-3-phosphate (1-alkyl-G3P) which is synthesized in
peroxisomes. Red box points to ether linkage at the sn-1 position of the glycerol backbone (B). Structures of representative ether lipid species
discussed in this review are shown with the ether linkage boxed in red (C). Note that in the case of plasmenyl glycerophospholipids a vinyl ether bond is
found at the sn-1 position.
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and lipidomics of sperm samples has revamped research in this field,
providing unique opportunities to advance in our knowledge on the
role of these relegated lipids highly abundant in sperm.

Examples of the known roles of ether lipids in the different
stages of sperm production and function are included in Figure 1.

a) Plasmanyl and plasmenyl phospholipids

During epididymal maturation, the number of phospholipids
per cell decreases by around 50% in ram, bull, and rat sperm (Scott
et al., 1967; Poulos et al., 1973; Aveldano et al., 1992) due to the loss
of the cytoplasmic droplet. Interestingly, this reduction of
phospholipids during epididymal transit is selective for diacyl
phospholipids whereas plasmalogen levels do not significantly
change, resulting in an increase in its proportion. In fact, early
lipid analyses have revealed that both plasmanyl (O-) and plasmenyl
(P-) forms of phosphatidylcholine and phosphatidylethanolamine
are the major phospholipid classes in mature porcine and bovine
sperm (Evans et al., 1980; Selivonchick et al., 1980). More recent
lipidomics analysis of sperm from humans and other species have
confirmed the prevalence of these ether lipids (Wood et al., 2016;
Rivera-Egea et al., 2018; Ramal-Sanchez et al., 2020). Although the
precise biological function of plasmanyl and plasmenyl
glycerophospholipids in the male reproductive system has yet to
be elucidated, it is hypothesized that the high proportion of these
lipids in mature sperm protects these cells against oxidative damage
due to their known antioxidant properties (Shan et al., 2021). Based
on their chemical structure, plasmalogens have been considered to
act as endogenous antioxidants. Due to their vinyl-ether linkage,
plasmalogens are prone to oxidation serving as scavengers for
radical species while protecting membrane lipids (Skaff et al.,
2008; Broniec et al., 2011). It has been proposed that the
susceptibility of plasmalogens to oxidative damage is due to a
low hydrogen bond dissociation energy at the carbon adjacent to
the vinyl ether bond (Murphy, 2001). Furthermore, the vinyl ether
bond might be more exposed to the oxidative agents due to its
proximity to the water-lipid interface, making them the first targets
of ROS (Lankalapalli et al., 2009). In this regard, oxidation of
plasmalogen by interaction with singlet oxygen/ROS occurs
significantly faster than their diacyl counterparts (Broniec
et al., 2011). However, the formation of further toxic
molecules like fatty aldehydes generated from plasmalogens
oxidation has also been reported, questioning their role
towards a pro-oxidative effect (Stadelmann-Ingrand et al.,
2004). This is relevant for sperm, considering the critical
effect of ROS, oxidative stress and lipid peroxidation on sperm
function, and their high content of polyunsaturated fatty acids
incorporated to plasmalogens reviewed by Gibb et al., (2020),
Gautier and Aurich, (2022).

Further challenging the idea that all plasmanyl/plasmenyl
species play similar roles, is the fact that specific ether lipid
species have been linked to opposite phenotypes in sperm
performance. For example, 40:4 plasmanyl-PC [(O-40:4)] and 40:
5 plasmenyl-PC [(P-40:5)] were identified as potential motility
markers in canine spermatozoa (Lucio et al., 2017) while PC (O-
42:4) and PE (P-34:2) were found to be significantly higher in sperm
from patients without pregnancy success after intracytoplasmic
sperm injection (Rivera-Egea et al., 2018). In addition, lack of

plasmenyl species did not seem to affect sperm viability (Werner
et al., 2020).

In summary, it is possible that ether lipid species with specific
length and degree of unsaturation of their fatty acid tails may
differentially affect the physical and functional properties of
sperm. Indeed, it is known that sperm lipid composition can be
influenced by factors such as the intake of dietary lipids (Saez and
Drevet, 2019). As such, future investigations may be directed
towards establishing a link between ether lipid saturation and
alkyl/acyl chain length, the reproductive performance of sperm
and its dependence on diet.

b) Platelet activating factor (PAF).

Studies in different species, including humans, have drawn a
positive relationship between PAF content and sperm motility
(Minhas et al., 1991; 1993; Roudebush et al., 2002), fertilization
rates (Toledo et al., 2003) and clinical pregnancy after assisted
reproduction treatments (Roudebush and Purnell, 2000). PAF
acts through binding to its receptor, which has been found to be
concentrated in the proximal head and midpiece of sperm from
different species (Reinhardt et al., 1999; Levine et al., 2002). Human
sperm samples with less than 50% forward motility possess low PAF
receptor levels (Roudebush et al., 2000), leading to the hypothesis
that this ether lipid is relevant for sperm function. This has been
further supported by the presence of enzymes responsible for PAF
catabolism and remodeling in human sperm and seminal plasma
(Gujrati et al., 1987).

The association between PAF and sperm function has been
studied using experiments where exogenous PAF was added during
capacitation. Incubation of mouse sperm in a medium containing
PAF resulted in an increase in fertilization rate, while incubation
with a PAF receptor antagonist significantly decreased motility and
fertilization rate, which was reversed with the addition of PAF
(Sengoku et al., 1992). In this regards, PAF-acetylhydrolase, the
primary enzyme responsible for inactivating PAF, has been
proposed as a decapacitation factor (Letendre et al., 1992;
Roudebush and Purnell, 2000; Zhu et al., 2006). More recently,
PAF was found to dose-dependently induce the acrosome reaction
in capacitated human spermatozoa and has been proposed to be
associated with ERK-signaling pathways (Wu et al., 2020).

c) Sulfogalactosylglycerolipid (SGG)

SGG (also known as seminolipid) is an anionic glycolipid found
selectively on the outer leaflet of mammalian primary spermatocytes
membranes (Ishizuka, 1997; Tanphaichitr et al., 2003). SGG levels
reach a maximum in round spermatids and remain constant in
sperm (Iwamori et al., 2020; Kongmanas et al., 2021). Saturated C16:
0-alkyl-C16:0-acyl is the primary species, with SGG containing other
alkyl/acyl chain lengths comprising less than 10% of the total SGG
content (Goto-Inoue et al., 2009).

SGG is essential in sperm production as spermatogenesis is
arrested in animals lacking SGG synthesis, leading to infertility
(Fujimoto et al., 2000; Honke et al., 2002). Moreover, male animals
defective in SGG turnover are subfertile (Xu et al., 2011). Altogether,
these results support the notion that SGG homeostasis in the testis is
critical for normal spermatogenesis.
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In addition, SGG involvement in capacitation and fertilization
has also been proposed. Several studies have shown that during
capacitation, SGG migrates to the equatorial region of the sperm
head (Flesch and Gadella, 2000), likely to allow the acrosome
reaction to occur. Moreover, most SGG is localized in low-
density detergent resistant membranes in capacitated sperm cells,
reflecting the ability of SGG to form lipid rafts (Khalil et al., 2006). A
role for SGG in sperm-ZP interaction has also been proposed (White
et al., 2000; Weerachatyanukul et al., 2001).

In humans, the ratio of cholesterol to SGG is found to be a
potential biomarker for semen quality. Oligoasthenozoospermic
(i.e., low sperm number and motility) patients were found to
have a five-fold higher cholesterol to SGG ratio than individuals
with normal sperm motility values, although this ratio has not been
implicated to affect fertility (Lopalco et al., 2019).

d) Glycosylphosphatidylinositol (GPI)

GPI is a lipid anchor added post-translationally to many cell-
surface proteins (Figure 2). The GPI anchors are assembled on a
phosphatidylinositol (PI) lipid in the ER, and then covalently
attached to the carboxyl terminus of proteins possessing a GPI-
attachment signal peptide (Kinoshita, 2016). In mammals,
despite the fact that most free cellular phosphatidylinositols
contain unsaturated diacyl glycerol forms, GPI anchors have
mainly 1-alkyl-2-acyl phosphatidylinositol with saturated fatty
acid tails that make them raft-compatible lipid structures
(Kanzawa et al., 2009). GPI anchored proteins (GPI-AP) are
typically associated with membrane microdomains or lipid rafts
(Kinoshita, 2020).

GPI-APs have been described to play different roles in sperm
function. Their origin on the sperm surface is primarily from de
novo synthesis by spermatogenic cells and/or by transfer from
epididymal exosomes (epididymosomes) (Martin-DeLeon, 2015;
Yoshitake and Araki, 2020). Database analysis showed more than
25 GPI-APs from testicular origin, and many of them are present in
sperm (Yoshitake and Araki, 2020). Among them, TEX101 and
Ly6K are essential for male fertility as sperm from knockout mice are
unable to reach the fertilization site in the oviduct (Fujihara et al.,
2014). Other GPI-APs have been implicated in different steps of
gamete interaction (i.e., GLIPR1-like protein 1, SPAM1, SPACA4)
(Phelps et al., 1988; Lin et al., 1994; Shetty et al., 2003; Gibbs et al.,
2010).

The key steps in the synthesis of GPI anchors are summarized in
Figure 3 (Kinoshita, 2020). GPI-AP synthesis is initiated with a
phosphatidylinositol precursor that is converted to a 1-alkyl 2- acyl
“three-footed” PI moiety where the inositol ring is acylated in
addition to the two alkyl/acyl tails of PI (Kinoshita, 2020).
Incorporation of the alkyl-based lipid moiety in the GPI anchor
occurs through a remodeling pathway. Although the exact
enzymatic steps of this remodeling are unclear, it is known that
the peroxisomal alkyl-phospholipid biosynthetic pathway is
required for biosynthesis of mammalian GPI anchors (Kanzawa
et al., 2009). The inositol ring in the GPI precursor first gets
deacylated by the GPI inositol-deacylase Pgap1. Interestingly,
Pgap1 has been detected in the proteome of mouse sperm
(Chauvin et al., 2012) and PGAP1 knockout mice showed male
infertility (Ueda et al., 2007). Therefore, lack of deacylation of the
GPI anchor may abolish the subsequent fatty acid remodeling to
incorporate the ether lipid moiety, which has been shown to be

FIGURE 3
Key steps in the synthesis of GPI-APs. The lipid precursor is phosphatidylinositol (PI, green) containing two acyl tails with mostly unsaturated fatty
acids in sn-2. 1) A diacyl to alkyl/acyl occurs through lipid remodelling involving a peroxisomal precursor. In addition the inositol ring gets palmitoylated. 2)
The deacylase PGAP1 removes the acyl tail. 3) Further acyl tail remodeling occurs to introduce a saturated fatty acid in position sn-2. Once mature, the
GPI-AP can be delivered to the plasma membrane. Modified from (Kinoshita, 2020).
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critical for raft association of GPI-APs (Maeda et al., 2007). This
highlights the relevance of alkyl-GPI anchors in male fertility.

Ether lipid biosynthesis: the core
peroxisomal pathway

The synthesis of all ether lipids is initiated by a core pathway that
operates in peroxisomes and is conserved along evolution (Figure 4).
In the first step of this pathway, dihydroxyacetone phosphate
(DHAP) is acylated at the sn-1 position by the enzyme DHAP
acyltransferase (GNPAT/DHAPAT) encoded by the mammalian
GNPAT gene (Dean and Lodhi, 2018). The acyl group on 1-acyl-
DHAP is subsequently exchanged for a fatty alcohol via alkyl-DHAP
synthase (AGPS/ADHAPS) encoded by the AGPS gene. Therefore,
this second step is responsible for the characteristic ether bond at the
sn-1 position, generating the intermediate 1-alkyl-DHAP (Dean and
Lodhi, 2018). Studies involving patients deficient in either GNPAT
or AGPS revealed a dependence on the presence of the catalytically
competent AGPS for the stability and maximal activity of GNPAT
(Itzkovitz et al., 2012), leading to the hypothesis that the two
enzymes form a functional complex in order to channel 1-acyl-

DHAP from GNPAT to AGPS. Both enzymes are localized on the
luminal side of the peroxisomal membrane (de Vet E. C. et al., 1997;
Thai et al., 1997; Braverman and Moser, 2012) and may exist as a
heterotrimeric complex in a 2:1 ratio of GNPAT to AGPS (Biermann
et al., 1999; Piano et al., 2016).

The fatty alcohol (AGPS substrate), typically restricted to C16:0,
C18:0, and C18:1 species, is generated from a peroxisomal
membrane-associated fatty acyl-CoA reductase (FAR), which
catalyzes the reduction of acyl-CoA (Cheng and Russell, 2004).
Two isoforms, FAR1 and FAR2, with a 58% sequence identity are
ubiquitously expressed, albeit at varying levels in different tissues
(Cheng and Russell, 2004). FAR1 activity is regulated by the cellular
levels of ether lipids as its degradation has been associated with high
levels of plasmenyl-PE (Honsho et al., 2010). Therefore, FAR1 is
strongly implicated to be the rate-limiting step in ether lipid
biosynthesis (Honsho et al., 2013). Another source of fatty
alcohols is derived from the interconversion with fatty aldehydes.
Evidence supporting the presence of this FAR-independent pathway
comes from patients with the inherited metabolic disease
Sjögren–Larsson Syndrome (SLS) (Weustenfeld et al., 2019),
characterized by a deficiency in the enzyme fatty aldehyde
dehydrogenase (FALDH) which oxidizes fatty aldehydes to fatty
acids (Keller et al., 2014; Weustenfeld et al., 2019). FALDH
deficiency results in an increase of fatty alcohols inducing ether
lipid synthesis, reflected by the accumulation of ether lipids in the
brain of SLS patients (Staps et al., 2020; Koch et al., 2022).

The last step in the core peroxisomal pathway for ether lipid
biosynthesis involves the conversion of 1-alkyl-DHAP to 1-alkyl-
glycerol-3 phosphate (1-alkyl-G3P), mediated by an acyl/alkyl
DHAP reductase (DHRS7B/ADHAPR) encoded by the DHRS7B
gene (Lodhi et al., 2012; Honsho et al., 2020). This reductase has the
capacity to also reduce 1-acyl-DHAP to 1-acyl-G3P, which is a
precursor for the synthesis of phosphatidic acid and all derived acyl-
glycerophospholipids (Figure 4). Although the expression of
enzymes involved in the previous steps in the pathway are non-
tissue specific, DHRS7B expression is high in thyroid, muscle, testis,
epididymis, and seminal vesicle (Sjöstedt et al., 2020; Human
Protein Atlas, 2022). 1-alkyl-G3P is exported from the
peroxisome for further acylation and dephosphorylation in the
ER, giving rise to the different species of ether lipids discussed
above (Honsho et al., 2020).

Peroxisomal disorders associated with ether lipid deficiency
typically result in severe clinical phenotypes, highlighting its
significance in human pathophysiology. The deficiency of ether
lipids could be due to mutations in the biosynthetic peroxisomal
proteins (Figure 4) or defects in peroxisomal import complexes.
Patients afflicted with Zellweger spectrum disorder lack the ability to
assemble functional peroxisomes due to pathogenic variants of PEX
genes, which encode proteins known as peroxins (Kim andHettema,
2015). Among these genes are PEX5 and PEX7, coding for cytosolic
receptors that recognize Peroxisomal Targeting Signals, PTS1 or
PTS2, respectively, which are necessary for the import of matrix
proteins to the peroxisome (Hasan et al., 2013). The core enzymes
for the biosynthesis of ether lipids display peroxisomal import
signals. Whereas GNPAT contains a PTS1 in its C-end, AGPS
presents a PTS2 in its N-end (de Vet E. C. J. M. et al., 1997;
Thai et al., 1997; Ofman et al., 1998). A second disorder, rhizomelic
chondrodysplasia punctata (RCDP), corresponds specifically to

FIGURE 4
Peroxisomal core ether lipid biosynthetic pathway is present in
sperm. In somatic cells, ether lipid biosynthesis is initiated in
peroxisomes (A) and is finalized in the endoplasmic reticulum (B)
where enzymesmay be able to use both acyl and alkyl precursors
(question mark). Boxed enzymes and pathways labelled in gold are
found in sperm according to Chauvin et al., 2012; Amaral et al., 2013,
2014; Castillo et al., 2018; Martín-Cano et al., 2020 and Greither et al.,
2023. Note peroxisome and ER compartments are believed to be
missing in sperm. DHAP, Dihydroxyacetone phosphate; G3P, glycerol
3-phosphate; PA, phosphatidic acid; DAG, diacylglycerol; GNPAT,
DHAP acyltransferase; AGPS, alkyl-DHAP synthase; DHRS7B, acyl/
alkyl DHAP reductase; FAR; fatty acyl-CoA reductase; FALDH fatty
aldehyde dehydrogenase; GPAT, G3-P acyltransferase; AGPAT, 1-acyl
G3-P acyltransferase; LPIN, lipin PA phosphatase.
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defects in the core ether lipid biosynthesis pathway. Five types of
RCDP have been identified; RCDP1 and RCDP5 are associated with
defects in the PEX7 and PEX5, respectively, with their abnormal
function preventing the import of GNPAT and AGPS to the
peroxisomal matrix. Mutations leading to deficiencies in GNPAT,
AGPS, and FAR1 are respectively referred to as RCDP2, RCDP3,
and RCDP4 (Barøy et al., 2015). Clinical characteristics of RCDP
include the shortening of limbs (rhizomelia), premature
calcifications of the epiphyseal cartilage, microcephaly, facial
dysmorphism, congenital cataracts, and psychomotor retardation
(Dean and Lodhi, 2018). Approximately 50% of affected patients
succumb by age six due to the severity of these phenotypes, and most
do not survive past adolescence (Braverman and Moser, 2012).
Studies to elucidate the underlying mechanisms that result in these
phenotypes were primarily conducted in knockout mouse models.
Mice deficient in GNPAT displayed symptoms observed in RCDP
patients, such as dwarfism, cataract formation, and abnormalities in
myelination (Rodemer et al., 2003; Teigler et al., 2009). Another
symptom of ether lipid deficiency displayed in the mouse models
includes male sterility, a characteristic not studied in humans due to
the premature mortality associated with the disorder. A targeted
disruption of the GNPAT gene results in abnormalities of the male
reproductive system, including testicular atrophy, decreased
seminiferous tubule diameter and absence of sperm in the
epididymis (Rodemer et al., 2003). Based on the presence of
apoptotic, multinucleated cells within the seminiferous epithelium
and a lack of mature sperm or elongating spermatids, a
spermatogenic arrest is hypothesized to occur between the
pachytene spermatocytes and round spermatid stages (Rodemer
et al., 2003). Blind-sterile2 (bs2) mice which express aberrantly
spliced AGPS transcripts exhibited similar phenotypes (Liegel
et al., 2011). These observations indicate an essential role of ether
lipids in the male reproductive system, raising the question of
whether they can serve as valid fertility markers.

A peroxisomal connection in sperm

As stated before, it is currently accepted that sperm are devoid
of peroxisomes, but reports on the proteome of these cells from
different species have consistently identified peroxisomal
proteins (Chauvin et al., 2012; Amaral et al., 2013; 2014;
Castillo et al., 2018; Martín-Cano et al., 2020; Greither et al.,
2023). Based on available data on peroxisomal residents at the
time, Amaral and others highlighted the presence of fifteen
proteins with exclusive peroxisomal localization in the human
sperm tail proteome. Furthermore, the expression of peroxisomal
membrane protein 11 (PEX11) and peroxisomal 3-ketoacyl-CoA
thiolase (ACAA1) was confirmed via immunocytochemistry
(PEX11 and ACAA1) and Western blot (ACAA1) in highly
purified sperm samples (Amaral et al., 2013). Consistent with
MS/MS results using sperm tails, both Pex11 and Acaa1 proteins
localized to sperm midpiece and in the case of Acaa1, the full
protein was detected by Western blot, indicating it is potentially
functional. In order to better define the extent of the peroxisomal
presence in the sperm proteome we conducted a meticulous
analysis of published proteomic data from human and mouse
sperm (Chauvin et al., 2012; Amaral et al., 2013; 2014; Castillo

et al., 2018; Greither et al., 2023) and compared it to the known
mammalian peroxisomal resident list of proteins (Yifrach et al.,
2018). Out of 195 peroxisomal residents, 138 proteins (~71%)
were detected at least once in sperm from humans or mice,
representing a much larger incidence than previously
anticipated (Supplementary Table S1). It is worth noting that
12 peroxins are present in sperm, with only 4 remaining
undetected. Interestingly, two of the missing peroxins
(Pex2 and Pex10) belong to the Really Interesting Genes
(RING) finger E3 ligases family, and have been recently shown
to act as sensors of intracellular FAs, regulating lipolysis in
response to ROS levels (Ding et al., 2021). Therefore sperm
are equipped with a large set of peroxisomal proteins, with its
most abundant matrix proteins (e.g.,.ACOX1, HSD17B4, CAT,
THIKA, EPHX2), membrane proteins (ABCD1, ABCD3,
ACBD5) and biogenesis associated peroxins in addition to the
enzymes from the ether lipid pathway. This probably reflects the
presence of a previously undetected peroxisomal remnant
compartment which based on previous immunocytochemistry
(PEX11 and ACAA1) may be localized to the midpiece in close
proximity to mitochondria. Consistently among all sperm
proteomes analyzed was the absence of the peroxisomal
enzymes FAR1 and FAR2. As highlighted in Figure 4, the core
enzymes GNPAT, AGPS and DHRS7B have all been detected in
sperm proteomic studies, but the pathway seems to be FAR-
independent, suggesting a detrimental role for fatty alcohols in
sperm. Our analysis also points to a truncated ether-lipid
biosynthetic pathway, with few extra peroxisomal steps
present in sperm. A large set of LysoPA acyltransferases
(AGPAT1, 2, 3, and 5) and a PA phosphohydrolase (LPIN1),
which are the putative enzymes responsible for the production of
diacyl- and 1-alkyl-2 acyl- PA and DAG respectively, are also
present in sperm (Figure 4). After these steps, the enzymes of the
Kennedy pathway known to consume the acyl- and alkyl-DAG
intermediates in the ER/Golgi, as well as PEDS, the desaturase
that introduces the vinyl bond for the synthesis of plasmalogens
(Werner et al., 2020), all seem to be missing from the sperm
proteome.

The presence of this truncated ether-lipid biosynthetic pathway
suggests a divergent role for the peroxisomal core pathway in sperm.
Given the pathway is FAR-independent it must consume an
alternative source of fatty-alcohols at the AGPS step. The
production of both fatty-aldehydes and fatty-alcohols from the
catabolism of membrane lipids in sperm has been documented
(Evans et al., 2021). Interestingly, mitochondrial cytochrome c
has been found to act as a plasmalogenase that cleaves
plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl
ether linkage, releasing fatty aldehydes in response to oxidative
stress (Jenkins et al., 2018). The presence of peroxisomal FALDH in
sperm also supports a role of a putative peroxisomal-like
compartment in the detoxification of fatty aldehydes.

We therefore propose that sperm contain a repurposed FAR-
independent ether lipid core pathway, probably localized to a
peroxisome-remnant compartment intimately connected to
mitochondria in order to act as a sink for toxic fatty alcohols
and fatty aldehydes produced from lipid catabolism (Figure 5).
Although somehow limited, evidence on the midpiece
localization of the peroxisomal residents PEX11 and
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ACAA1 supports the close proximity of such compartment to
mitochondria (Amaral et al., 2013).

In summary, sperm ether lipids, produced in early stages of
spermatogenesis and/or provided by the epididymis, play a
variety of roles in sperm function included in this review, and
probably others to be elucidated in future studies. In addition,
this review puts forward the concept that an enhanced
collaboration between mitochondria and peroxisomal-like
remnant structures may exist in sperm, in order to deal with
the oxidative stress burden generated during sperm performance
by the high mitochondrial activity (Balbach et al., 2020; Ferreira
et al., 2021; Giaccagli et al., 2021).

Concluding remarks

Ether lipids are particularly abundant in sperm. As we have
described in the first sections of this review, their diversity and
relevance for sperm production, maturation, and function have been
addressed by different laboratories over time. Many outstanding
questions remain regarding the regulation of their synthesis and
metabolism during the various steps preparing sperm for
fertilization. The analysis of available sperm proteomic data
carried out in this review identified key lipid metabolic pathways,
opening new avenues in this regard. It is well known that sperm
damage generated by oxidative stress as a consequence of a systemic
inflammation produced by exogenous insults is one of the main
causes of male infertility (Agarwal et al., 2018; Su et al., 2022).
Therefore, the potential involvement of peroxisomal enzymes in a
new antioxidant mechanism to help sperm deal with this damage
contributes critical information that has the potential of significantly
improving the diagnosis and treatment of male infertility. Future
research is needed to challenge the proposed hypothesis and to

further investigate the localization of the large peroxisomal
subproteome present in sperm.

Search methods

We performed this study by searching for keywords from
PubMed and Web of Science on all articles in English published
prior to April 2023. Search terms were based on the following
keywords: Ether lipids, Plasmanyl, Plasmenyl, Plasmalogen,
Platelet-activating factor, Sulfogalactosylglycerolipid, Seminolipid,
Glycosylphosphatidylinositol, GNPAT/DHAPAT, AGPS, DHRS7B,
fatty alcohols, oxidative stress, proteomics, and peroxisome combined
to male reproductive tract, sperm and fertilization. In all cases,
references cited in the analyzed articles were also considered.
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