111 research outputs found
CHCHD2 harboring Parkinson's disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2
The T61I mutation in CHCHD2, a protein residing in the mitochondrial intermembrane space, causes an autosomal dominant form of Parkinsonâs disease (PD), but the underlying pathogenic mechanisms are not well understood. Here, we compared the subcellular localization and solubility of wild-type and T61I mutant CHCHD2 in human cells. We found that mitochondrial targeting of both wild-type and T61I CHCHD2 depended on the four cysteine residues in the C-terminal coiled-coil-helix-coiled-coil-helix (CHCH) domain but not on the N-terminal predicted mitochondrial targeting sequence. The T61I mutation did not interfere with mitochondrial targeting of the mutant protein, but induced its precipitation in the IMS. Moreover, T61I CHCHD2 induced increased mitochondrial production of reactive oxygen species (ROS) and apoptosis, which was prevented by treatment with anti-oxidants. Retention of T61I CHCHD2 in the cytosol through mutation of the cysteine residues in the CHCH domain prevented its precipitation as well as its apoptosis-inducing effect. Importantly, T61I CHCHD2 potently impaired the solubility of wild-type CHCHD2. In conclusion, our data show that the T61I mutation renders mutant CHCHD2 insoluble inside mitochondria, suggesting loss of function of the mutant protein. In addition, T61I CHCHD2 exerts a dominant-negative effect on the solubility of wild-type CHCHD2, explaining the dominant inheritance of this form of PD
Approximated stability analysis of bi-modal hybrid co-simulation scenarios
This is an accepted manuscript of an article published by Springer in: Cerone A., Roveri M. (eds) Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in Computer Science, vol 10729, available online at: https://doi.org/10.1007/978-3-319-74781-1_24
The accepted version of the publication may differ from the final published version. For information on re-use, please refer to the publisherâs terms and conditions.Co-simulation is a technique to orchestrate multiple simulators in order to approximate the behavior of a coupled system as a whole. Simulators execute in a lockstep fashion, each exchanging inputs and output data points with the other simulators at pre-accorded times. In the context of systems with a physical and a cyber part, the communication frequency with which the simulators of each part communicate can have a negative impact in the accuracy of the global simulation results. In fact, the computed behavior can be qualitatively different, compared to the actual behavior of the original system, laying waste to potentially many hours of computation. It is therefore important to develop methods that answer whether a given communication frequency guarantees trustworthy co-simulation results. In this paper, we take a small step in that direction. We develop a technique to approximate the lowest frequency for which a particular set of simulation tools can exchange values in a co-simulation and obtain results that can be trusted.Published versio
Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces
Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an âaverageâ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D â ND) and vice-versa (ND â D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error
Synaptotagmin 5 regulates Ca2+-dependent Weibel-Palade body exocytosis in human endothelial cells.
Membrane protein insertion is an essential cellular process. The broad biophysical and topological range of membrane proteins necessitates multiple insertion pathways, which remain incompletely defined. Here, we have discovered a new membrane protein insertion pathway, identified the class of substrates it handles, explained why other known pathways do not work for these substrates and reconstituted the pathway using purified components
ATP13A2 deficiency disrupts lysosomal polyamine export
ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndromeâa parkinsonism with dementia1âand early-onset Parkinsonâs disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinsonâs disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system
PycnogenolÂź and Ginkgo biloba extract: effect on peroxynitrite-oxidized sarcoplasmic reticulum Ca2+-ATPase
The effect of two natural standardized plant extracts, PycnogenolÂź and EGb 761, on sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity and posttranslational modifications induced by peroxynitrite was investigated to assess their possible protective role. EGb 761 was found to have a protective effect on SERCA activity in the concentration range of 5â40 ”g/ml. On the other hand, PycnogenolÂź caused a decrease of SERCA activity at concentrations of 25 ”g/ml. EGb 761 did not prevent protein carbonyl formation upon oxidation with peroxynitrite. On the contrary, PycnogenolÂź at the concentrations of 5 and 10 ”g/ml significantly decreased the level of protein carbonyls by 44% and 54%, respectively. Neither PycnogenolÂź nor EGb 761 exerted a protective effect against thiol group oxidation.The plant extracts studied modulated peroxynitrite-injured SERCA activity by different ways and failed to correlate with posttranslational modifications. Their effect seems to be associated with their ability to change SERCA conformation rather than by their antioxidant capacity
- âŠ