925 research outputs found

    Extending the DEVS Formalism with Initialization Information

    Full text link
    DEVS is a popular formalism to model system behaviour using a discrete-event abstraction. The main advantages of DEVS are its rigourous and precise specification, as well as its support for modular, hierarchical construction of models. DEVS frequently serves as a simulation "assembly language" to which models in other formalisms are translated, either giving meaning to new (domain-specific) languages, or reproducing semantics of existing languages. Despite this rigourous definition of its syntax and semantics, initialization of DEVS models is left unspecified in both the Classic and Parallel DEVS formalism definition. In this paper, we extend the DEVS formalism by including an initial total state. Extensions to syntax as well as denotational (closure under coupling) and operational semantics (abstract simulator) are presented. The extension is applicable to both main variants of the DEVS formalism. Our extension is such that it adds to, but does not alter the original specification. All changes are illustrated by means of a traffic light example

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Foundations of Modelling and Simulation of Complex Systems

    Get PDF
    Modelling and simulation are becoming increasingly important enablers for the analysis and design of complex systems. In application domains such as automotive design, the notion of a "virtual experiment" is taken to the limit and complex designs are model-checked, simulated, and optimized extensively before a single realization is ever made. This "doing it right the first time" leads to tremendous cost savings and improved quality. Furthermore, with appropriate models, it is often possible to automatically synthesize (parts of) the system-to-be-built. In this paper, the basic concepts of modelling and simulation are introduced. These concepts are based on general systems theory and start from the idea of a model as an abstract representation of knowledge about structure and behaviour of some system. The purpose is either analysis or design in a particular experimental context. Typically, different formalisms are used such as Ordinary Differential Equations, Queueing Networks, and State Automata. It will be shown how these different formalisms all share a common structure and differ in the choice of time base, state space, and description of temporal evolution. This allows one to classify formalisms on the one hand and to find a common ground for implementing simulators on the other hand

    Minimally Constrained Stable Switched Systems and Application to Co-simulation

    Full text link
    We propose an algorithm to restrict the switching signals of a constrained switched system in order to guarantee its stability, while at the same time attempting to keep the largest possible set of allowed switching signals. Our work is motivated by applications to (co-)simulation, where numerical stability is a hard constraint, but should be attained by restricting as little as possible the allowed behaviours of the simulators. We apply our results to certify the stability of an adaptive co-simulation orchestration algorithm, which selects the optimal switching signal at run-time, as a function of (varying) performance and accuracy requirements.Comment: Technical report complementing the following conference publication: Gomes, Cl\'audio, Beno\^it Legat, Rapha\"el Jungers, and Hans Vangheluwe. "Minimally Constrained Stable Switched Systems and Application to Co-Simulation." In IEEE Conference on Decision and Control. Miami Beach, FL, USA, 201

    Co-simulation of Continuous Systems: A Tutorial

    Full text link
    Co-simulation consists of the theory and techniques to enable global simulation of a coupled system via the composition of simulators. Despite the large number of applications and growing interest in the challenges, the field remains fragmented into multiple application domains, with limited sharing of knowledge. This tutorial aims at introducing co-simulation of continuous systems, targeted at researchers new to the field

    Lateral Root Initiation and the Analysis of Gene Function Using Genome Editing with CRISPR in Arabidopsis

    Get PDF
    Lateral root initiation is a post-embryonic process that requires the specification of a subset of pericycle cells adjacent to the xylem pole in the primary root into lateral root founder cells. The first visible event of lateral root initiation in Arabidopsis is the simultaneous migration of nuclei in neighbouring founder cells. Coinciding cell cycle activation is essential for founder cells in the pericycle to undergo formative divisions, resulting in the development of a lateral root primordium (LRP). The plant signalling molecule, auxin, is a major regulator of lateral root development; the understanding of the molecular mechanisms controlling lateral root initiation has progressed tremendously by the use of the Arabidopsis model and a continual improvement of molecular methodologies. Here, we provide an overview of the visible events, cell cycle regulators, and auxin signalling cascades related to the initiation of a new LRP. Furthermore, we highlight the potential of genome editing technology to analyse gene function in lateral root initiation, which provides an excellent model to answer fundamental developmental questions such as coordinated cell division, growth axis establishment as well as the specification of cell fate and cell polarity.</jats:p
    • …
    corecore