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Abstract: Lateral root initiation is a post-embryonic process that requires the specification of a
subset of pericycle cells adjacent to the xylem pole in the primary root into lateral root founder
cells. The first visible event of lateral root initiation in Arabidopsis is the simultaneous migration
of nuclei in neighbouring founder cells. Coinciding cell cycle activation is essential for founder
cells in the pericycle to undergo formative divisions, resulting in the development of a lateral
root primordium (LRP). The plant signalling molecule, auxin, is a major regulator of lateral root
development; the understanding of the molecular mechanisms controlling lateral root initiation
has progressed tremendously by the use of the Arabidopsis model and a continual improvement of
molecular methodologies. Here, we provide an overview of the visible events, cell cycle regulators,
and auxin signalling cascades related to the initiation of a new LRP. Furthermore, we highlight the
potential of genome editing technology to analyse gene function in lateral root initiation, which
provides an excellent model to answer fundamental developmental questions such as coordinated
cell division, growth axis establishment as well as the specification of cell fate and cell polarity.

Keywords: lateral root initiation; asymmetric cell division; auxin signalling; CRISPR; TSKO; genome
editing; Arabidopsis; gene function

1. Introduction
1.1. Arabidopsis thaliana as a Model Plant to Study Root Development

The Arabidopsis plant, as with most angiosperms, develops an extensive root system
designed to function in the anchorage of the plant, in the absorption of water and mineral
ions and in interaction with microorganisms. Several properties make roots amenable
to developmental studies: the root apical meristem is accessible and not embedded in
developing organs or primordia; the root contains no pigment and is therefore essentially
transparent; and there are relatively few differentiated cell types in roots. In addition, root
morphogenesis in many plants occurs in a continuous and relatively uniform pattern with-
out significant developmental transitions, while cell files are easy to observe in longitudinal
sections and their origin can be traced back to the meristem [1]. Understanding of root
morphology and development in Arabidopsis has largely originated from studies of the
seedling root system.

The remarkably simple anatomy of the Arabidopsis primary root has its origin in the
embryonic root. Upon germination, the cells in the root meristem initiate a program of
regulated cell division and expansion. Since there are no morphogenetic cell movements in
plants, the final form of the root is primarily controlled by three parameters: the timing
of cell division, the orientation of the plane of cell division and the degree and direction
of cell expansion. The ability of a root to grow in a continuous fashion is dependent
on the regulation of cell division and expansion as well as maintenance of a stem cell
population within the meristem. The ultimate architecture of the plant root system depends
on environmental conditions as well as genetic factors. Root growth can be profoundly
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affected by a variety of external stimuli, including gravity, light, temperature, moisture,
aeration and physical obstacles [2]. These stimuli can alter cell division activity, the direction
or degree of cell expansion, the amount of root branching, or the structure of root cells.

1.2. Lateral Root Development Enables Root Branching

Root branching is commonly known to occur by the formation of lateral roots, roots
formed from internal layers along the parent root axis. However, the first rooting plant
lineage, lycophytes, was not able to generate lateral roots. Instead, dichotomous branching
of the root tip, involving the formation of two new root apical meristems from two apical
stem cells, allowed these plants to shape their root system architecture [3]. Hence, lyco-
phytes are able to have root branches only at the root tips. Evolution of root branching in
later diverging plant lineages is accompanied by an increase in plasticity [4]. Some ferns
have a fixed number of lateral root stem cells specified within clonally related groups of
cells derived from the daughter cells of the apical cell and referred to as merophytes that
are maintained along the root and are competent to form lateral roots [5–8]. In the model
fern Ceratopteris richardii, two out of three successive merophytes have the competence to
form a lateral root, resulting in a regular branching pattern [5,9]. Hence, lateral roots of
ferns contribute to an increased capacity to explore the substrate as compared to terminal
branching roots in lycophytes, but their fixed positioning still restricts the plasticity of their
root system.

1.3. In Arabidopsis Lateral Roots Arise from the Pericycle

In seed plants, lateral roots are initiated endogenously along the main root axis from a
specific subset of pericycle cells, also called lateral root founder cells [10–12]. The pericycle
is composed of two different types of cells—cells located in front of the two phloem
poles and cells situated in front of the two xylem poles—each with different cytological
features and cell fates [13–16]. Remarkably, Arabidopsis xylem pole pericycle cells are
in a division-competent stage while being part of the differentiated part of the primary
root [13,17]. In addition, these cells display physiological and genetic characteristics that
resemble those of root meristem cells and can be the source of massive induction of lateral
roots [16,18]. Understanding of the mechanisms controlling lateral root development has
progressed tremendously through studies in Arabidopsis, which were recently reviewed
in Banda et al. (2019) and Du and Scheres (2018). Lateral root formation can be divided
into four steps: lateral root positioning, lateral root initiation, lateral root development and
patterning and lateral root emergence [19]. Newly formed lateral roots consist of de novo
patterned root tissues and meristems, resembling those in the primary roots that ensure
their indeterminate growth.

1.4. Initiation of Lateral Roots Is Marked by Coordinated Migration of Nuclei and Cell Divisions

The first visible event of lateral root initiation is the simultaneous migration of nuclei
of neighbouring pericycle lateral root founder cells towards the common cell wall, followed
by an asymmetric anticlinal cell division, giving rise to two small daughter cells and two
larger flanking cells, which is referred to as a Stage I LRP [11,12] (Figure 1). Asymmetric
cell divisions are formative divisions that generate daughter cells of distinct identity and
are essential in enabling post-embryonic organogenesis [20]. In mutants with impaired
lateral root formation, no simultaneous polar movement of nuclei in lateral root founder
cells could be observed [11]. These observations revealed that the coordinated nuclear
migration of two neighbouring xylem pole pericycle nuclei might be a prerequisite for
proper primordium initiation and the formation of lateral roots.
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Figure 1. Time lapse from lateral root founder cell specification to asymmetric cell division in a single xylem pole pericycle
cell. Sequential cellular events preceding the first asymmetric division that indicates nuclei (in red) and microtubules (in
green). Polar migration of the nucleus in a lateral root founder cell is followed by an asymmetric anticlinal cell division,
resulting in a short and a long daughter cell.

The next division occurs periclinally and yields a two-layered (Stage II) LRP [12].
Subsequently, a series of anticlinal and periclinal cell divisions and differentiation steps
leads to cell diversity and tissue patterns, resulting in the development of a dome-shaped
LRP that progressively acquires the same tissue organisation as the root meristem and
eventually emerges through overlying tissues of the primary root. Distinct LRP stages
(I–VII) have been classified based on anatomical analysis, considering the number of cell-
layers that the LRP comprises or based on its position through the overlaying tissues [12,21].
Intriguingly, it was shown that the tissues in the primary root overlaying an LRP influence
the shape and development of the primordium [22–24]. The growing LRP needs to deal
with the mechanical constraints imposed by the surrounding tissues. Endodermal cells
need to change shape and lose volume to accommodate the expansion of the LRP. It was
shown that endodermal feedback is already required very early for the execution of the
first formative divisions and later, for the growth of the LRP through this persistent cell
layer [23].

1.5. Lateral Root Founder Cells Are Specified in the Pericycle

GATA23 is the earliest known marker for lateral root founder cell specification that
was identified by meta-analysis of transcriptomic datasets for lateral root initiation [11,25].
GATA23 is expressed in xylem pole pericycle cells before the first asymmetric division.
Moreover, it was shown that GATA23 expression is controlled by an auxin signalling mech-
anism [11]. Xylem pole pericycle cells pass through a developmental window for lateral
root initiation in which, at minimum auxin concentration, these cells have a high proba-
bility of becoming specified founder cells [10]. The endodermis assists in the transition
from the founder cell stage to the lateral root initiation phase via an auxin reflux pathway
between endodermal cells and the adjacent founder cells [26,27]. Next, when a local auxin
concentration maximum is reached, several auxin signalling components interact together
and the founder cells proceed to lateral root initiation [11,28].
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2. Auxin Signalling Is Essential for Lateral Root Development

Auxin acts as a common integrator to many endogenous and environmental signals,
regulating lateral root development [29]. A plethora of auxin ‘signalling modules’ act
sequentially during lateral root development and control various steps of lateral root
formation, from priming to initiation, patterning, and emergence (Figure 2). An auxin
response module is defined as a pair of strongly interacting Aux/IAA proteins and Auxin
Response Factors (ARFs), which, together, regulate a subset of primary auxin response
genes [30]. The properties of this auxin response depend on the cellular auxin concentration,
F-box (TIR1 and AFB1-5) affinity for auxin and for the Aux/IAA target protein, Aux/IAA–
ARF interaction, as well as ARF activity and affinity for the promoter of its target genes.
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Figure 2. Auxin regulates different stages of lateral root development through multiple auxin-signalling modules in
Arabidopsis. Lateral root founder cell priming involves the IAA28–ARF5, 6, 7, 8, 19, IAA3-ARF7 and POTENT/IAA18-ARF7
module (Modules 1, 2 and 3, respectively) in the basal meristem [11,31,32]. After priming, cells at prebranch sites maintain
an increased auxin response, which was revealed through analysis of the pDR5:LUCIFERASE reporter [28,33–35]. Lateral
root founder cells start to accumulate auxin, which triggers their polarisation and subsequent lateral root initiation [11]. The
IAA14/SOLITARY-ROOT–ARF7-ARF19 module (Module 4) regulates the polarisation of lateral root founder cell pairs,
which leads to coordinated nuclear migration towards the common cell walls [11,36]. Both the IAA14/SLR–ARF7,19 and the
IAA12/BDL–ARF5 modules (Modules 4 and 5, respectively) are necessary for triggering lateral root initiation, which starts
with an asymmetric anticlinal division of lateral root founder cells [37–39]. These modules also regulate the morphological
and histological patterning of the LRP [26,40,41]. Cells coloured in blue indicate auxin response according to the synthetic
DR5 reporter. Cells coloured in brown belong to the pericycle.

Developmental decisions on the distribution of lateral roots already take place in the
distal zone of the primary root tip, in a transition zone between the apical meristem and the
elongation zone, also formerly referred to as the basal meristem. Studies using DR5-based
reporters suggest that periodic auxin response, along with oscillating waves of gene expres-
sion, functions as an endogenous clock-like mechanism [11,28,31–35]. Following an auxin
response maximum in the protoxylem cell file, the neighbouring xylem pole pericycle cells
are ‘primed’ and form pre-branch sites, providing them with the competence to develop
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lateral roots. The mechanism through which the ‘priming information’ is transmitted from
the protoxylem to the overlaying xylem pole pericycle has not been characterised yet;
however, computational modelling combined with in planta experiments recently led to
the insight that both the frequency of priming and the passing on of the auxin maximum
from protoxylem to pericycle cells can be explained by growth dynamics in the meristem
periodically, generating cell size and hence auxin loading potential variations [42,43]. Con-
cerning the auxin response mechanism involved, it was shown that expression of GATA23
is dependent on the IAA28–ARF7/19 auxin module [11]. In addition, transactivation of
GATA23 in xylem pole pericycle cells in the iaa28 gain-of-function mutant is able to rescue
the dominant iaa28 lateral root mutant phenotype [11]. These observations suggest that
an IAA28-dependent auxin signalling mechanism controls GATA23 expression, regulating
lateral root founder cell specification prior to lateral root initiation. Furthermore, it was
shown that ARF7 together with its auxin-sensitive inhibitor IAA18/POTENT would be
responsible for inducing a negative regulatory loop contributing to the oscillatory pattern
in the auxin response [32].

Auxin regulates and coordinates both founder cell divisions and founder cell polar-
ity/identity specification during lateral root initiation. The auxin response increases in
founder cell pairs a few hours before initiation of lateral root organogenesis occurs [10].
Disturbing the auxin response in founder cells using polar auxin transport inhibition is
sufficient to block initiation, whereas artificial auxin production in single xylem pole peri-
cycle cells triggers initiation, indicating that auxin accumulation is necessary and sufficient
for lateral root initiation [10,44]. Moreover, coordinated regulation of auxin influx and
efflux carriers including AUXIN RESISTANT 1 (AUX1) and PIN-FORMED (PIN) in the
LRP and surrounding tissues is needed to establish the auxin gradient essential for lateral
root initiation (Figure 2) [26,27,45].

In solitary-root (slr)-1, a dominant negative mutant of SLR/IAA14, lateral root initiation
is blocked at the G1-to-S transition and no nuclear migration in paired founder cells can be
observed. Moreover, the defects in slr-1 cannot be restored by the application of exogenous
auxin. The arf7arf19 double mutant phenocopies slr-1 and IAA14 interact with ARF7 and
ARF19, indicating that auxin stimulates lateral root initiation through the SLR/IAA14–
ARF7,19 signalling module (Figure 3). Following the first asymmetric division, the small
daughter cells exhibit an auxin maximum, which is accompanied by BODENLOS/IAA12–
MONOPTEROS/ARF5-dependent signalling [46]. It was shown that the hemizygous gain-
of-function bdl mutants and weak loss-of-function monopteros (mpS319) mutants display
abnormalities in pericycle divisions and lateral root positioning [46]. Taken together, a
second auxin signalling module involving BDL/IAA12 and MP/ARF5 regulates lateral
root initiation together with SLR–ARF7–ARF19 (Figure 3). It has been proposed that auxin
plays an instructive role in the structural and functional patterning of the LRP similar to the
shoot and root apical meristems [26]. However, exactly how this auxin gradient actually
governs cell identities and divisions is still poorly understood.
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Figure 3. Overview of the lateral root-specific gene knockout system in Arabidopsis using pGATA23-CRISPR-TSKO.
(A) Schematic presentation of the specific expression of Cas9 translationally fused to the fluorescent reporter mCherry in
lateral root founder cells by using the GATA23 promoter sequence (indicated in red). (B) Schematic presentation of the
guide RNA (gRNA)–Cas9 complex. Cas9 is translationally fused to the fluorescent reporter mCherry (indicated in red).
(C) Example of the mutation profile of a sampled lateral root of a seedling with the pGATA23-CRISPR-TSKO construct. The
frequency of different alleles of the targeted gene was determined by sanger sequencing and subsequent TIDE analysis [47].
One-base-pair insertions are the predominant outcome.

3. The Cell Cycle Drives Lateral Root Initiation

The pericycle in Arabidopsis is a heterogeneous tissue with diarch symmetry composed
of two cell types with distinct cell division ability [16]. Phloem pole pericycle cells are
mitotically inactive, whereas xylem pole pericycle cells retain stem cell activity after leav-
ing the primary root meristem and thus, maintain a division-competent state essential
for lateral root formation [13,14,16]. It was shown that the nuclear protein ABERRANT
LATERAL ROOT FORMATION 4 (ALF4) is required to maintain xylem pole pericycle cells
in a mitosis-competent state [10,48,49]. The alf4-1 mutant has a normal primary root, but is
deficient in lateral root initiation. Although auxin is required at this stage of the process, it
was proposed that ALF4 functions independently of auxin (DiDonato et al., 2004). Recent
discoveries reveal that alf4 is resistant to auxin and displays reduced DR5 activity, suggest-
ing that reduced auxin response contributes to the lateral root defect [50]. Furthermore, it
was shown that ALF4 physically interacts with RING BOX (RBX1), a subunit of the SCFTIR1

complex regulating the degradation of Aux/IAA proteins [50]. The alf4 mutant stabilizes
the SCFTIR1 substrate IAA17, and SCFTIR1-dependent degradation of Aux/IAA proteins is
inhibited by ALF4, which suggests that increased levels of SLR/IAA14 in the alf4 mutant
could result in reduced auxin response during lateral root formation [50].

The onset of lateral root initiation coincides with the occurrence of a series of anticlinal,
asymmetric divisions in the xylem pole pericycle. Hence, cell cycle activation is inherently



Genes 2021, 12, 884 7 of 14

connected with lateral root initiation. The transition of xylem pole pericycle cells from G1 to
S and subsequent cycle progression are stimulated by auxin. These ‘primed’ cells reactivate
the cell cycle only when they reach the lateral root initiation zone, which indicates that
activating cell cycle-related genes alone is not sufficient to initiate a new lateral root [39,51].
Moreover, disturbing the auxin response through inhibition of polar auxin transport or
impaired auxin signalling is sufficient to inhibit the cell divisions necessary for lateral
root initiation [18,39,44]. Activation and progression through the major phases of the cell
cycle are governed by the control of Cyclin-dependent kinases (CDKs). Several highly
conserved components of the cell cycle have been demonstrated to be important for lateral
root initiation [20]. For instance, Lateral Organ Boundaries Domain (LBD) 18 and LBD33
lateral root regulatory protein dimers mediate lateral root initiation by direct binding to
the promoter of E2Fa, which encodes a transcriptional activator of cell cycle genes [52].
E2Fa is expressed during lateral root initiation and promotes the first asymmetric cell
divisions [46,52].

Recently, it has been demonstrated that the lateral root regulatory PICKLE gene
encoding a chromatin remodelling factor interacts with Retinoblastoma-related 1 (RBR1) to
repress LBD16 promoter activity [53]. RBR1 Is expressed in xylem pole pericycle cells
and partially silencing RBR1 expression results in increased root branching. Inhibition
of LR formation by PKL–RBR1 is counteracted by auxin, indicating that, in addition to
auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also
controlled at the chromatin level in an auxin-signalling dependent manner [53].

The auxin-mediated G1 to S transition is inhibited by the Interactor of CDK/Kinase
inhibitory protein (KIP)-related protein (ICK/KRP) family of proteins, hence preventing
lateral root initiation [18,54]. Loss-of-function mutants of KRP2 display increased lateral
root density, whilst overexpression of KRP2 results in a large reduction in lateral root
density [18,54,55]. KRP2 interacts with the CDKA;1–CYCD2;1 complex and results in
accumulation in the nucleus of the inactive complex [54]. Upon auxin treatment, reduced
KRP2 expression and increased KRP2 protein turnover result in a transient increase in
CDKA;1–CYCD2;1 activity and subsequent cell division, which promotes lateral root
initiation [55]. Other D-type cyclins such as CYCD4;1 and CYCD3;1 are also shown to be
involved in lateral root initiation [18,56]. In addition, A2-type cyclins are involved in early
G2 to M transition of the cell cycle during lateral root initiation. The triple cyca2;234 mutant
displays a delay in the expression of mitotic regulators, while auxin signalling and G1 to S
regulatory genes remain unaffected [57].

The F-box protein S-PHASE KINASE-ASSOCIATED PROTEIN 2A (SKP2A) positively
regulates lateral root initiation [58,59]. Auxin binds directly to SKP2A and mediates the
proteolysis of cell cycle-repressing transcription factors in a TIR1-AFB auxin receptor-
independent pathway. Overexpression of SKP2A in the tir1 mutant induces lateral root
initiation and skp2a mutants display an auxin-resistant root growth phenotype. In contrast,
a close homologue, SKP2B, negatively regulates the cell cycle and lateral root development
as it represses founder cell divisions [60].

In summary, strict control of cell division is regulated by highly conserved inhibiting
and activating components of the cell cycle and is required for lateral root organogenesis.

4. Genome Editing for Functional Genomic Studies in Lateral Root Development
4.1. Loss-of-Function Mutant Alleles Are Indispensable in Functional Genomic Studies

In view of the complexity of molecular control on lateral root initiation, the high
number of potential regulators involved and the contribution of different tissue layers,
solid genetic tools are a necessity to further unravel this process. Loss-of-function mutant
alleles have been indispensable to analyse and demonstrate the function of genes in lateral
root development. In plants, knockout or knockdown lines have been generated using
various techniques such as ionizing radiation, ethyl methane sulfonate treatment, T-DNA or
transposon insertions in the genome, RNA interference or artificial microRNAs. In addition,
engineered nucleases can be used to generate knockout lines as a result of error-prone



Genes 2021, 12, 884 8 of 14

non-homologous end-joining (NHEJ) induced upon site-specific double-strand breaks in
plant genomes. In the past five years, the generation of knockout plant lines via clustered
regularly interspaced short palindromic repeats (CRISPR) genome editing technology
has been widely adopted by researchers, while the basic principles behind double-strand
break-induced targeted mutagenesis have been well known for decades [61]. Previous
experiments demonstrated that by induction of double-strand breaks in genomes using
a highly specific endonuclease, different types of genome editing can be achieved [61].
Distinct types of nucleases have been engineered including mega nucleases, zinc finger
nucleases, transcription activator-like effector nucleases and CRISPR-associated (Cas)
nucleases [62–65].

4.2. On the Origin of CRISPR

The CRISPR system originates from bacteria and archaea, in which it serves as an adap-
tive immune response system that degrades invading foreign plasmid or viral DNA [66].
The elucidation of the molecular mechanism of a type II CRISPR/Cas9 system from Strep-
tococcus pyogenes has revealed a simple three-component system [64]. Cas9 is a nuclease
that is able to cleave double-stranded DNA with two nuclease domains, each cleaving
one of the two DNA strands. Target specificity is mediated by a short CRISPR RNA that
binds directly to a stretch of 20 nucleotides on the target DNA, referred to as protospacer.
An additional 3-nucleotide element termed protospacer-adjacent motif (PAM), with the
sequence 5′-NGG-3′ downstream of the target sequence, is necessary for binding and
cleavage by Cas9. This means that any 23-nucleotide sequence ending in 5′-GG-3′ can be
targeted. The trans-activating CRISPR RNA interacts with the CRISPR RNA and facilitates
the recruitment of Cas9, which results in the cleavage of the DNA target sequence 3 base
pairs upstream of the PAM. Furthermore, it was shown that a direct fusion of the two
RNAs to generate a chimeric guideRNA (gRNA) is functional as well [64].

4.3. Loss-of-Function Mutant Alleles in Arabidopsis Can Be Efficiently Generated with CRISPR

The first scientific report that described an effective CRISPR system to generate inheri-
table mutations in Arabidopsis thaliana was published in 2014 [67]. They used the constitu-
tive UBIQUITIN 4-2 promoter from Petroselinum crispum to drive Cas9 expression [67] and
provided a Gateway®-based cloning system to clone up to two gRNA expression cassettes
in the expression vector. Cas9 is very efficient in plants at inducing double-strand DNA
breaks. Repair of DNA breaks by the error-prone NHEJ pathway ultimately results in
the formation of short insertions and/or deletions (indels) at the break site [68]. These
indels most often lead to frame shifts and/or early stop codons, which result in knockout
mutations in the targeted gene(s). Currently, the most commonly used CRISPR system in
plants is a two-component system based on Cas9 and the gRNA. However, many variations
and applications have been developed which were recently reviewed in Wada et al. [69].

Most CRISPR efforts in plants to date have focused on generating stable and herita-
ble mutant alleles for reverse genetics approaches, which has substantially contributed
to the study of redundant gene families or genes for which no or a limited number of
mutant alleles are available in Arabidopsis mutant collections [70–73]. However, this strat-
egy is limited in case loss-of-function conveys severe pleiotropic phenotypes or even
lethality. It is estimated that 10% of the approximately 25,000 protein-coding genes in
the genome of Arabidopsis are essential [74]. Hence, detailed functional analysis of many
fundamentally important plant genes is impeded and hinders the study of their function
in a developmental-specific context.

4.4. Current Genetic Tools Comprise Certain Limitations for Functional Gene Studies in a
Developmental-Specific Context

Lateral root development is a post-embryonic process that requires the specification
of a subset of pericycle cells adjacent to the xylem pole in the primary root into lateral
root founder cells [11]. Subsequently, during the process of lateral root initiation, cell
fate specification and de novo lateral root meristem establishment are required for lateral
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root organogenesis [75–77]. These processes rely on key genetic players including PIN,
PLETHORA, AUX/IAA and ARF genes that are necessary in primary root development as
well [26,46,78–81]. Hence, a lot of loss-of-function alleles affect primary and lateral root
development, which hampers functional analysis. Moreover, primary roots are initiated
during embryogenesis and post-embryonic functional analysis of some of these common
genetic players such as, for instance, MP/ARF5 are limited because they govern essential
functions during embryogenesis [78].

Different strategies have been pursued to enable a comprehensive investigation of
gene function in specific developmental or physiological processes. An approach is the
use of tissue-specific gene silencing [82,83]. However, gene silencing is often incom-
plete, interfering with the interpretation of the observed phenotypes, and it has been
demonstrated that small RNAs can be mobile, limiting the tissue specificity in knockdown
experiments [84]. Alternatively, transgenic vectors generating dominant-negative protein
versions have been developed for certain genes and expressing these mutant versions in a
tissue-specific context can locally interfere with endogenous gene functions [37,85]. Other
methods include the conditional knockout of genes in specific cell types or tissues using
Cre/lox-based clonal deletion [86,87]. However, these approaches rely on complicated
genetic engineering and are difficult to scale.

4.5. CRISPR-TSKO Enables Lateral Root-Specific Loss-of-Function Studies

These limitations have been overcome using genome editing with CRISPR technology
to generate conditional knockouts. Originally, tissue-specific promoters driving Cas9 ex-
pression have been employed, with the focus on increasing the chance of obtaining heritable
mutant alleles [88–90]. For instance, the NST3/SND1 promoter was used to drive xylem-
specific Cas9 expression and target the essential gene HCT encoding a hydroxycinnamoyl
transferase in Arabidopsis [91]. The potential of conditional gene knockouts of several
essential genes in diverse plant cell types, tissues, and organs in Arabidopsis has recently
been demonstrated [92]. Therefore, a versatile CRISPR tissue-specific knockout (CRISPR-
TSKO) vector system was devised that allows for the specific generation of somatic DNA
mutations in particular plant cell types, tissues, and organs [92–94]. Furthermore, an
additional layer of conditionality was tested by integrating the CRISPR technology with an
XVE-based, cell-type-specific inducible system [95–97]. This inducible CRISPR system in
Arabidopsis enables efficient generation of target gene knockouts in desired cell types and
at desired times [95].

Highly relevant for the molecular dissection of the lateral root formation program, it
was recently shown that it is possible to specifically knockout genes in entire lateral roots
using the promoter sequence of GATA23 (Figure 3) [92]. As a proof-of-concept, GFP was
targeted in Arabidopsis seedlings ubiquitously expressing NLS-GFP in the transgenic line
pHTR5:NLS-GFP-GUS [92,98]. Fluorescence and sequence analysis of T1 and T2 seedlings
demonstrated that organ-specific GFP knockout in lateral roots is highly efficient via the
xylem-pole pericycle-expressed Cas9 controlled by GATA23 (Figure 3). Interestingly, the
observation that entire lateral roots lack a GFP signal provides evidence that GATA23-
expressing precursor cells are clonally linked to the cells that constitute lateral roots.

In a next step, ARF7 and ARF19 were targeted as lateral root initiation is strongly
inhibited in arf7arf19 double mutants [92,99]. Surprisingly, lateral root initiation was only
mildly affected when ARF7 and ARF19 were knocked out in GATA23-expressing pericycle
cells [92], while an arf7arf19 mutant is not capable of producing lateral roots. This suggests
that the function of ARF7 and ARF19 in lateral root founder cells is not overpowering for
lateral root development and raises the question of when and in which cells of the primary
root these ARFs are crucial for lateral root organogenesis.

Recently, a CRISPR-based lateral root-specific repressor system was developed to
study the function of genes by conditional knockdown [100]. In this system, a mutated
version of Cas9 (dCas9) is used, which is no longer able to cleave DNA because of the
perturbation of its nuclease activity. By targeting the dCas9 protein to the promoter regions



Genes 2021, 12, 884 10 of 14

of candidate genes, the resulting steric hindrance impacts the expression of the targeted
genes. Interestingly, lateral root-specific simultaneous knockdown of ARF7 and ARF19
results in a mild reduction in lateral root density compared to the empty vector control [100].
This observation is consistent with lateral root-specific CRISPR-TSKO of ARF7 and ARF19.

Functional analysis of CDKA;1 and potential redundancy with other CDK members
at the onset of lateral root initiation has been limited because loss-of-function of CDKA;1
severely affects development [101]. Interestingly, lateral root branching is not affected when
CDKA;1 is knocked out in GATA23-expressing pericycle cells [92]. However, simultaneous
knockout of CDKA;1, CDKB1;1 and CDKB1;2 halts lateral root growth soon after emergence
with only a small number of lateral roots that arrest before emergence. These severely
stunted lateral roots consist of a reduced number of extremely enlarged cells as a result
of inadequate cell divisions and is reminiscent of mutants affected in cell cycle progres-
sion [101]. Taken together, A- and B1-subtype CDKs are concomitantly essential for lateral
root organogenesis and lateral root-specific CRISPR-TSKO revealed that morphogenesis of
lateral roots still occurs upon absence of intact cell cycle progression.

These experiments demonstrate that conditional knockouts enable the function of
genes in spatial and temporal contexts of plant development to be studied and can pinpoint
to unexpected and unexplored functions of known regulators. In summary, loss-of-function
studies by generating inheritable or somatic mutations using genome editing opens avenues
for discovering and analysing gene functions in lateral root development.

5. Conclusions

Root branching through lateral root formation is an important component of the
adaptability of the root system to its environment. Regular spacing of lateral roots, as well as
the initiation and development of lateral root primordia, is tightly regulated in Arabidopsis.
However, lateral root development is readily influenced by external cues, ensuring the
root system architecture is highly adaptable to different environmental conditions. To
achieve such strict regulation while maintaining a high degree of flexibility, lateral root
development relies on strong intercellular communication networks, mediated by the
exchange of molecular messengers over both short and long distances.

Auxin acts as a common integrator to many endogenous and environmental signals
regulating lateral root development. It was shown that auxin regulates and coordinates both
lateral root founder cell divisions and founder cell polarity/identity specification during
lateral root initiation. Thereafter, auxin plays an instructive role for the structural and
functional patterning of the LRP. How and which molecular mechanisms auxin regulates
during lateral root development are still poorly understood.

Root development is primarily controlled by three intertwined parameters: the timing
of cell division, the orientation of the plane of cell division and the degree and direction of
cell expansion. Hence, detailed functional analysis of genes involved in these fundamen-
tally important processes in a developmental-specific context is limited because loss-of-
function results in pleiotropic phenotypes or even embryo lethality. Lateral root-specific
genome editing enables the analysis of gene function specifically in root organogenesis. The
advantageous properties of Arabidopsis root development including simple morphology,
small size, transparent organ combined with genome editing will undoubtedly contribute
to a better understanding of these fundamental cellular processes.
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