34 research outputs found

    CXCL10 is a crucial chemoattractant for efficient intranasal delivery of mesenchymal stem cells to the neonatal hypoxic-ischemic brain

    Get PDF
    Background: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. Methods: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. Results: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. Conclusions: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window

    Transcriptomic and functional analysis of Aβ1-42 oligomer-stimulated human monocyte-derived microglia-like cells

    Get PDF
    Dysregulation of microglial function contributes to Alzheimer's disease (AD) pathogenesis. Several genetic and transcriptome studies have revealed microglia specific genetic risk factors, and changes in microglia expression profiles in AD pathogenesis, viz. the human-Alzheimer's microglia/myeloid (HAM) profile in AD patients and the disease-associated microglia profile (DAM) in AD mouse models. The transcriptional changes involve genes in immune and inflammatory pathways, and in pathways associated with Aβ clearance. Aβ oligomers have been suggested to be the initial trigger of microglia activation in AD. To study the direct response to Aβ oligomers exposure, we assessed changes in gene expression in an in vitro model for microglia, the human monocyte-derived microglial-like (MDMi) cells. We confirmed the initiation of an inflammatory profile following LPS stimulation, based on increased expression of IL1B, IL6, and TNFα. In contrast, the Aβ1-42 oligomers did not induce an inflammatory profile or a classical HAM profile. Interestingly, we observed a specific increase in the expression of metallothioneins in the Aβ1-42 oligomer treated MDMi cells. Metallothioneins are involved in metal ion regulation, protection against reactive oxygen species, and have anti-inflammatory properties. In conclusion, our data suggests that exposure to Aβ1-42 oligomers may initially trigger a protective response in vitro

    Single-cell profiling of human subventricular zone progenitors identifies SFRP1 as a target to re-activate progenitors

    Get PDF
    Following the decline of neurogenesis at birth, progenitors of the subventricular zone (SVZ) remain mostly in a quiescent state in the adult human brain. The mechanisms that regulate this quiescent state are still unclear. Here, we isolate CD271+ progenitors from the aged human SVZ for single-cell RNA sequencing analysis. Our transcriptome data reveal the identity of progenitors of the aged human SVZ as late oligodendrocyte progenitor cells. We identify the Wnt pathway antagonist SFRP1 as a possible signal that promotes quiescence of progenitors from the aged human SVZ. Administration of WAY-316606, a small molecule that inhibits SFRP1 function, stimulates activation of neural stem cells both in vitro and in vivo under homeostatic conditions. Our data unravel a possible mechanism through which progenitors of the adult human SVZ are maintained in a quiescent state and a potential target for stimulating progenitors to re-activate

    Этапные операции "damage control" при тяжелых повреждениях печени

    Get PDF
    Показана эффективность применения при тяжелых травмах печени этапных оперативных вмешательств "damage control", направленных на профилактику коагулопатии, полиорганной недостаточности, а также на уменьшение числа послеоперационных гнойно−септических осложнений и летальности.The efficacy of staged surgical procedures "damage control" aimed at prevention of coagulopathy, polyorgan insufficiency as well as the changes in the number of post−operative purulent septic complications and death is shown

    Transcriptomic and morphological maturation of human astrocytes in cerebral organoids

    Get PDF
    Cerebral organoids (CerOrgs) derived from human induced pluripotent stem cells (iPSCs) are a valuable tool to study human astrocytes and their interaction with neurons and microglia. The timeline of astrocyte development and maturation in this model is currently unknown and this limits the value and applicability of the model. Therefore, we generated CerOrgs from three healthy individuals and assessed astrocyte maturation after 5, 11, 19, and 37 weeks in culture. At these four time points, the astrocyte lineage was isolated based on the expression of integrin subunit alpha 6 (ITGA6). Based on the transcriptome of the isolated ITGA6-positive cells, astrocyte development started between 5 and 11 weeks in culture and astrocyte maturation commenced after 11 weeks in culture. After 19 weeks in culture, the ITGA6-positive astrocytes had the highest expression of human mature astrocyte genes, and the predicted functional properties were related to brain homeostasis. After 37 weeks in culture, a subpopulation of ITGA6-negative astrocytes appeared, highlighting the heterogeneity within the astrocytes. The morphology shifted from an elongated progenitor-like morphology to the typical bushy astrocyte morphology. Based on the morphological properties, predicted functional properties, and the similarities with the human mature astrocyte transcriptome, we concluded that ITGA6-positive astrocytes have developed optimally in 19-week-old CerOrgs

    The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid

    Get PDF
    Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging

    Neonatal brain injury unravels transcriptional and signaling changes underlying the reactivation of cortical progenitors

    No full text
    Summary: Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/β-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/β-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity

    Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement.

    Get PDF
    Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI). Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5 × 10(6) MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy

    Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Get PDF
    Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases
    corecore