30 research outputs found

    Gender Moderates the Association between 5-HTTLPR and Decision-making under Ambiguity but Not under Risk

    Get PDF
    Decisions made under ambiguity may involve a different genetic architecture than those made under risk. Because gender moderates the effect of genetic polymorphisms on serotonin function and because there are gender differences in decision-making, the present study examined potential gender moderation of associations between polymorphisms in important serotonin system candidate genes (serotonin transporter [SLC6A4] and tryptophan hydroxylase-2 [TPH2]) and performance on a decision-making task (Iowa Gambling Task, IGT) in healthy, adults (N = 188; 62% women). Subjects were genotyped for the well-studied SLC6A4 promoter variant 5-HTTLPR and a TPH2 single nucleotide polymorphism in intron-8 (rs1386438). Genotype at rs1386438was not associated with performance on the IGT. A significant gender by 5-HTTLPR genotype interaction effect was detected when decision-making was under ambiguity (i.e., the first block of 20 choices) but not under risk (blocks 2–5). Performance on the first block of 20 choices was not correlated with performance on subsequent blocks, supporting the interpretation that early performance on the IGT indexes decision-making under ambiguity, while performance on blocks 2–5 indexes decision-making under risk. These findings suggest that decision-making under ambiguity and risk may have different genetic architectures and that individual differences in decision-making under ambiguity are associated with genetic variation in SLC6A4

    Persistence and quality of vegetation cover in expired Conservation Reserve Program fields

    Get PDF
    For nearly 40 years, the Conservation Reserve Program (CRP) has implemented practices to reduce soil erosion, improve water quality, and provide habitat for wildlife and pollinators on highly erodible cropland in the United States. However, an approximately 40,470 ha (10 million acres) decline in enrolled CRP land over the last decade has greatly reduced the program\u27s environmental benefits. We sought to assess the program\u27s enduring benefits in the central and western United States by (1) determining the proportion of fields that persist in CRP cover after contracts expired, (2) identifying the type of agricultural production that CRP fields shift to after contract expiration, (3) comparing the vegetation characteristics of expired CRP fields that are persisting in CRP-type cover with enrolled CRP fields, and (4) identifying differences in management activities (e.g., haying, grazing) between expired and enrolled CRP fields. We conducted edge-of-field vegetation cover surveys in 1092 CRP fields with contracts that expired ≥3 years prior and 1786 currently enrolled CRP fields in 14 states. We found that 41% of expired CRP fields retained at least half of their area in CRP-type cover, with significant variation in persistence among regions ranging from 19% to 84%. When expired fields retained CRP vegetation, bare ground was low in all regions and grass cover was somewhat greater than in fields with current CRP contracts, but at the expense of forb cover in some regions. Evidence of more frequent management in expired CRP fields may explain differences between active and expired CRP fields. Overall, there is clear evidence that CRP-type cover frequently persists and provides benefits for more than three years after contract expiration. Retaining CRP-type cover, post-contract, is an under-recognized program benefit that persists across the central and western United States long after the initial retirement from cropland

    Gender Moderates the Association between 5-HTTLPR and Decision-making under Ambiguity but Not under Risk

    Get PDF
    Decisions made under ambiguity may involve a different genetic architecture than those made under risk. Because gender moderates the effect of genetic polymorphisms on serotonin function and because there are gender differences in decision-making, the present study examined potential gender moderation of associations between polymorphisms in important serotonin system candidate genes (serotonin transporter [SLC6A4] and tryptophan hydroxylase-2 [TPH2]) and performance on a decision-making task (Iowa Gambling Task, IGT) in healthy, adults (N = 188; 62% women). Subjects were genotyped for the well-studied SLC6A4 promoter variant 5-HTTLPR and a TPH2 single nucleotide polymorphism in intron-8 (rs1386438). Genotype at rs1386438was not associated with performance on the IGT. A significant gender by 5-HTTLPR genotype interaction effect was detected when decision-making was under ambiguity (i.e., the first block of 20 choices) but not under risk (blocks 2–5). Performance on the first block of 20 choices was not correlated with performance on subsequent blocks, supporting the interpretation that early performance on the IGT indexes decision-making under ambiguity, while performance on blocks 2–5 indexes decision-making under risk. These findings suggest that decision-making under ambiguity and risk may have different genetic architectures and that individual differences in decision-making under ambiguity are associated with genetic variation in SLC6A4

    Digitally twinned additive manufacturing: Detecting flaws in laser powder bed fusion by combining thermal simulations with in-situmeltpool sensor data

    Get PDF
    The goal of this research is the in-situ detection of flaw formation in metal parts made using the laser powder bed fusion (LPBF) additive manufacturing process. This is an important area of research, because, despite the considerable cost and time savings achieved, precision-driven industries, such as aerospace and biomedical, are reticent in using LPBF to make safety–critical parts due to tendency of the process to create flaws. Another emerging concern in LPBF, and additive manufacturing in general, is related to cyber security – malicious actors may tamper with the process or plant flaws inside a part to compromise its performance. Accordingly, the objective of this work is to develop and apply a physics and data integrated strategy for online monitoring and detection of flaw formation in LPBF parts. The approach used to realize this objective is based on combining (twinning) in-situ meltpool temperature measurements with a graph theory-based thermal simulation model that rapidly predicts the temperature distribution in the part (thermal history). The novelty of the approach is that the temperature distribution predictions provided by the computational thermal model were updated layer-by-layer with in-situ meltpool temperature measurements. This digital twin approach is applied to detect flaw formation in stainless steel (316L) impeller-shaped parts made using a commercial LPBF system. Four such impellers are produced emulating three pathways of flaw formation in LPBF parts, these are: changes in the processing parameters (process drifts); machine-related malfunctions (lens delamination), and deliberate tampering with the process to plant flaws inside the part (cyber intrusions). The severity and nature of the resulting flaws, such as porosity and microstructure heterogeneity, are characterized ex-situ using X-ray computed tomography, optical and scanning electron microscopy, and electron backscatter diffraction. The digital twin approach is shown to be effective for detection of the three types of flaw formation causes studied in this work
    corecore