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� A novel digital twin method for
real-time flaw detection in laser
powder bed fusion.

� Approach combines in-situ meltpool
temperature measurements with
computational predictions.

� Three types of flaws considered from
processing, machine, and cyber
intrusions.

� Digital twin approach detects all the
three types of flaws.

� Characterization of flaws and
microstructure analysis confirms the
proposed approach.
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a b s t r a c t

The goal of this research is the in-situ detection of flaw formation in metal parts made using the laser
powder bed fusion (LPBF) additive manufacturing process. This is an important area of research, because,
despite the considerable cost and time savings achieved, precision-driven industries, such as aerospace
and biomedical, are reticent in using LPBF to make safety–critical parts due to tendency of the process
to create flaws. Another emerging concern in LPBF, and additive manufacturing in general, is related to
cyber security – malicious actors may tamper with the process or plant flaws inside a part to compromise
its performance. Accordingly, the objective of this work is to develop and apply a physics and data inte-
grated strategy for online monitoring and detection of flaw formation in LPBF parts. The approach used to
realize this objective is based on combining (twinning) in-situ meltpool temperature measurements with
a graph theory-based thermal simulation model that rapidly predicts the temperature distribution in the
part (thermal history). The novelty of the approach is that the temperature distribution predictions pro-
vided by the computational thermal model were updated layer-by-layer with in-situ meltpool tempera-
ture measurements. This digital twin approach is applied to detect flaw formation in stainless steel (316L)
impeller-shaped parts made using a commercial LPBF system. Four such impellers are produced emulat-
ing three pathways of flaw formation in LPBF parts, these are: changes in the processing parameters (pro-
cess drifts); machine-related malfunctions (lens delamination), and deliberate tampering with the
process to plant flaws inside the part (cyber intrusions). The severity and nature of the resulting flaws,
such as porosity and microstructure heterogeneity, are characterized ex-situ using X-ray computed
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tomography, optical and scanning electron microscopy, and electron backscatter diffraction. The digital
twin approach is shown to be effective for detection of the three types of flaw formation causes studied
in this work.
� 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Motivation

In laser powder bed fusion (LPBF, Fig. 1) layers of metal powder
are deposited and selectively melted using thermal energy from a
laser [1]. The LPBF process can create complex geometries that are
difficult, if not impossible, to manufacture using conventional sub-
tractive or formative processes [2]. Despite its ability to transcend
design and manufacturing barriers, as well as reduce cost and lead
times, the use of LPBF in safety–critical industries is currently lim-
ited due to its tendency to create flaws [3,4]. Common LPBF flaws
include non-uniform (heterogeneous) microstructure within a
part, lack-of-fusion and gas porosity, distortion and cracking of
part due to residual stresses, poor surface finish, recoater crashes,
and failure of anchoring supports [5–8]. Hence, an important
research area in LPBF is the online monitoring, detection, and pre-
vention of flaw formation in the part as it is being printed, ulti-
mately culminating in the rapid and reliable in-process
qualification of part quality [2,9–13].

Flaw formation in LPBF is generally linked to the complex ther-
mal phenomena involved in melting, cooling, solidification and
remelting of powder by the laser [1,14,15]. To explain further,
the thermal aspects of LPBF that govern flaw formation can be cat-
egorized at two broad levels [14–17]. First, at the micro-scale, the
melting of the powder material creates a wake of molten material,
called the meltpool, in the order of approximately 100 lm in size
(depending on the material characteristics and process parame-
ters) [16]. The temperature distribution, shape (flow), and ejecta
(spatter characteristics) of the meltpool are known to influence

the resulting microstructure, porosity, and cracking at the granular
level [3,18].

Second, at the macro-scale or part-level, which is in the order of
millimeters, the rapid scanning action of the laser and the contin-
uous melting of material at high temperature causes heating and
cooling cycles with rates nearing 106 �C�s�1 and 105 �C�s�1

, respec-
tively [19–21]. The steep temperature gradients coupled with non-
uniform spatiotemporal temperature distributions at the part-level,
called the thermal history, are linked to residual stresses, part defor-
mation, and potential material phase transformations [22–25].

The meltpool and part-level thermal interactions leading to
flaw formation in as-built LPBF parts are influenced by the follow-
ing six factors [5,7,10,19,26–32]: (1) processing parameters, such
as laser power, velocity, hatch spacing, scanning pattern; (2) part
design, including part shape, orientation and nature of support
structures; (3) number, shape and location of other parts on the
build plate (build layout); (4) properties of the feedstock powder
material, including distribution of powder particles, thermal con-
ductivity, gas entrapment, and contaminants, among others; (5)
process faults (drifts or deviations) caused by machine-related
anomalies; and (6) malicious cyber intrusions aimed at altering
the printing process or part design.

The objective of this work is to develop and apply a physics and
data integrated strategy to monitor and detect flaw formation in
LPBF parts. The approach used to achieve this objective combines
temperature measurements at the meltpool-level provided by
appropriate in-situ sensor data with fast and accurate part-level
thermal simulations. Such a digital twin that integrates physics-
based simulations and in-situ sensor data has the potential to pro-
vide opportune feedback for correcting incipient anomalies,

Fig. 1. A schematic of the laser powder bed fusion (LPBF) process. Layers of powder are raked on a build plate and selectively melted by a rapidly scanning laser.
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thereby reducing waste from failed parts [33–36]. The rationale
and need for such a physics-based strategy to detect flaw forma-
tion in LPBF is motivated in the context of the drawbacks of using
a purely data-driven approach in the forthcoming section.

1.2. Challenges in data-driven flaw monitoring in LPBF

There is substantial ongoing research to detect flaw formation
in LPBF parts by analyzing signatures acquired from in-situ sensor
arrays designed to capture meltpool- and part-level phenomena
[11,27,37–39]. Sensing approaches to track the meltpool behavior
used in prior research involve high-speed imaging, thermal imag-
ing, and optical spectroscopy. Popular part-scale flaw monitoring
approaches include tracking the layer temperature with infrared
thermal cameras, and imaging the powder bed with an optical
camera, among others [3,9,13,40–42].

There are three drawbacks in applying a purely sensor data-
driven approach for flaw monitoring of LPBF that motivate the
need for a physics and data integrated strategy, these are: (i)
latency of detection (ii) poor generalizability of data-driven models
to different part shapes and layouts; and (iii) resource-intensive
nature of acquiring data [9,36,37,43]. These are explained
herewith.

(1) Latency in acquiring and analyzing sensor data.

Flaw formation in LPBF results from evanescent, multi-scale
thermal phenomena extending from meltpool-level (100 mm) to
part-level (>1 mm). Therefore, LPBF process monitoring requires
acquisition of data from heterogenous sensors continuously over
a long period at high sampling rates. For example, in this work,
meltpool temperature data is acquired at a sampling rate of
200 kHz. Hence, LPBF sensor data have all the hallmarks of the
3 V’s of big data – variety, volume, and velocity.

After acquisition, the sensor signatures are transferred to a data
analysis procedure trained to detect flaw formation [36]. There is
an inherent latency associated with the transfer and analyses of
the large volume of heterogeneous sensor data despite using
high-performance computing and pre-trained models. This latency
in detecting incipient flaw formation can potentially exceed the
time to recoat and process a layer with fresh powder (typically
about 30 to 60 s). This latency in the data transfer-analyses loop
makes purely data-driven analysis too slow to detect and correct
a flaw before it is permanently sealed in by the next layer.

(2) Data-driven models lack generalizability as they do not
encapsulate the process physics.

As explained in Sec. 1.1, the thermal history is a function of
multiple interlinked factors, such as part geometry, part location,
orientation (build layout) and process parameters. For example,
in practical LPBF builds, such as those in this work, the cross-
section of the part may not be constant, but vary considerably
along the build direction (z-direction). The changing cross-
section entails that the time to scan a layer also varies from
layer-to-layer, which in turn affects the part thermal history and
the observed sensor signatures [22,44]. Accordingly, data-driven
approaches trained based on sensor signatures obtained from sim-
ple shaped uniform cross-section test coupons, such as cubes and
cylinders, may not be generalizable to complex, practical part
shapes.

Apart from part shape, the sensor signatures are also contingent
on the build plan. For example, if the build plan is modified, e.g., by
adding (removing) some parts from the build plate, changing the
orientation of parts, altering the scanning pattern, it not only
changes the thermal history, but also influences the related sensor

signatures [26]. Hence, data-driven models that do not account for
the causal thermal physics of the LPBF process are liable to cause
significant flaw detection errors when transferred to different build
plans even with the same part shape and materials.

(3) Data sets in LPBF are expensive to obtain and curate.

While data-driven machine learning models have been used for
flaw detection in LPBF, these models require a relatively large vol-
ume of paired input–output observations (labeled data) [36,43].
Such data is prohibitively expensive to acquire, given the small
batch sizes and high cost of raw (powder) materials of LPBF [38].
Moreover, to provide sufficient labeled inputs to build data-
driven models, a considerable LPBF-processed parts need to be
examined for flaws using non-destructive analysis (e.g., X-ray com-
puted tomography) and microstructural analysis (e.g., scanning
electron microscopy) which are laborious, and cost and time pro-
hibitive [22,42].

1.3. Novelty

In this work we develop and apply a digital twinned, physics
and data integrated strategy for detecting incipient flaw formation
in LPBF parts as an alternative approach to purely data-driven pro-
cess monitoring. The key idea of this digital twin of additive manu-
facturing concept as explained in the emerging AM literature (Ref.
[33–36]) is to detect part characteristics, such as flaw formation
(porosity and deformation), and microstructure evolved by com-
bining theoretical predictions of certain process phenomena
derived from a mechanistic (physics)-based model with in-situ
process signatures. A mechanism to link the physical predictions
and sensor data is through data analytics and machine learning
algorithms.

We demonstrate that flaw formation is detected by comple-
mentary (twinning) macro-scale part-level thermal history predic-
tions obtained from a physics-based model with meltpool-scale
temperature acquired from in-process sensors. In this work, the
physics-based model captures the effect of part geometry on the
thermal history, and the sensor data acquire local meltpool-level
temperature not provided by the physical model. We eschewed
simulation of meltpool behavior as it requires considerable compu-
tation effort compared to prediction of part-level thermal history.
This is because, meltpool-level simulations must account for com-
plex thermal, fluid flow, and surface tension interactions
[14,16,45]. In contrast, at the part-level, flaw formation is predom-
inantly related to thermal effects.

In this work, the meltpool-level phenomena is captured using a
commercial sensing array consisting of multiple photodetectors.
The part-level temperature distribution is simulated using the
graph theory-based thermal modeling approach. As demonstrated
in our prior work, the graph theory approach provides significant
computational efficiency-related advantages over finite element-
based models in the prediction of the thermal history in LPBF
[22,44,46–48].

The uniqueness of the digital twin implemented in this work is
that the meltpool sensor data is used as a direct input to the graph
theory-based thermal model in lieu of applying data-driven mod-
els or machine learning to make the correlations between thermal
history predictions, sensor data and part quality [49]. The meltpool
temperature measurements acquired in-situ inform (update) the
thermal model layer-by-layer during the process as the part is
being printed. By combining simulation and sensor signatures,
the approach precludes the need to transfer sensor signatures to
a separate data analysis algorithm. The approach thus mitigates
the detection latency involved in data-driven flaw monitoring.
Moreover, since the digital twin incorporates both the macro-
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scale effect of part shape on thermal history and micro-scale effect
of laser-material interaction in the form of the meltpool tempera-
ture it inherently encapsulates the effect of different processing
parameters, such as scanning pattern, hatch spacing, laser power,
velocity etc.

To the best of the authors’ knowledge, updating physical model
predictions layer-by-layer with in-process sensor signatures in the
context of flaw detection in LPBF has not been reported previously.
We apply the concept of the digital twin for detecting the onset of
three different types of flaw formation pathways in LPBF of com-
plex stainless steel (316L) impeller-shaped parts. The three types
of flaw formation pathways studied in this work are: (1) porosity
and microstructure heterogeneity due to abrupt change in process-
ing parameters, (2) deliberate embedded voids, and (3) machine
anomalies (lens delamination).

The rest of this paper is organized into four sections as follows.
Section 2 details the experimental procedure (Sec. 2.1) and sensing
array (Sec. 2.2), and describes the digital twin approach combining
thermal simulations with in-process sensor data to detect flaw for-
mation in LPBF (Sec. 2.3). The results and conclusions are reported
in Sec. 3 and Sec. 4, respectively.

2. Methods

2.1. Experiments

2.1.1. Test parts and processing conditions
As exemplified in Fig. 2, four identical stainless steel (SAE 316L)

impeller-shaped parts each of diameter 60 mm and height
16.9 mm (U60 mm � 16.9 mm) consisting of 845 layers (20 mm
thickness) were built simultaneously on an EOS M290 LPBF sys-
tem. The build time for completing the four impellers is approxi-
mately 16 h and 30 min.

The impeller was chosen as an exemplar part to demonstrate
the digital twin due to its practical nature. It is divisible into three
distinctive regions along the build direction: base, mid, and fin-
sections. These sections include complex, challenging to build fea-
tures such as a teardrop-shaped internal cooling channel, and sev-
eral inclined thin cross-section fin structures. Given the variation
in cross-section along the build height, the surface area scanned
by the laser would change from layer-to-layer. Consequently, as
is explained in depth in Sec. 2.1.3, the cooling time between layers
would vary, and is anticipated to result in a complex thermal
history.

A summary of the process conditions is presented in Table 1.
The nominal parameter sets were based on a priori optimization
for SAE 316L alloy suggested by the machine tool manufacturer
and based on our recent published work with an identically shape
large-scale U155 mm � 35 mm impeller reported in Ref. [44]. The
metal powder was sourced from Praxair Surface Technologies
under the trade name TruForm 316 with mean particle size of
30 mm.

The parts are placed staggered along the diagonal of the build
plate for three reasons [50]: (i) to accommodate all four impellers
with sufficient spacing between each part (the build plate is
250 mm � 250 mm); (ii) staggering prevents the recoater from
encountering all four parts at once, and thus reduces the axial load
on the recoater; and (iii) staggering prevents debris and flaws from
cascading onto other parts.

2.1.2. Build plan
The build plan was devised to initiate three types of flaw forma-

tion mechanisms, these are:

(a) Case I: Flaws resulting from changes in processing parame-
ters. These are termed process drifts due to deviations in crit-
ical parameters, such as laser power from optimized set
point.

(b) Case II: Flaws of varying sizes that are deliberately placed in
certain sections of the part to emulate cyber intrusions.

(c) Case III: Flaw formation due to a faulty machine. Specifically,
processing with a degraded optical coating of the f-h focus-
ing lens (lens delamination).

2.1.2.1. Case I – Flaw formation due to process drifts (Process
Deviations). In Case I, as shown Fig. 3, the four impeller parts were
built under varying laser power settings at different layers to cause
flaw formation. For example, for the part labeled Impeller I shown
in Fig. 3, the laser power was fixed at 195 W (volumetric energy
density, Ev � 100 J�mm�3) throughout the build. Impeller I is con-
sidered the flaw-free standard or baseline part produced under
acceptable conditions and is hereby termed the Nominal part. The
conditions for the nominal Impeller I are similar to those for an
identical larger scale impeller reported in our previous work Ref.
[44].

The base and mid-sections of Impeller II were produced at the
nominal laser power of 195W (Ev � 100 J�mm�3), while the fin sec-
tion was produced under a reduced laser power of 125 W (Ev-
� 64 J�mm�3), viz., a decrease of � 35% in laser power (energy
density). Impeller II is termed as processed under Nominal-Lo laser
power settings. The reduction of the laser power from 195 W to
125 W during processing of the fin region was expected to result
in lack-of-fusion porosity due to insufficient material consolidation
[42].

Impeller III was produced under Nominal-Hi conditions with the
base and mid sections processed at laser power 195 W, and the fin
section produced at 265 W (�136 J�mm�3), i.e., an increase
of � 35% in laser power. Since the fin has the thinnest cross-
section, the increase in the laser power was expected to cause
excessive heating leading to grain coarsening in the fin section.
Impeller IV termed Lo-Lo was produced entirely at a low-level of
laser power of 125 W, and was anticipated to result in lack-of-
fusion flaw formation throughout its structure.

2.1.2.2. Case II – Flaw formation due to cyber intrusions (Embedded
Flaws). The aim of Case II is to emulate cyber-physical intrusions.
Such intrusions can be caused my malicious actors either by plac-
ing flaws in the part during the design phase or tampering with the
process when the part is being produced [30,32]. Accordingly,
spherical-shaped voids were embedded in Impellers II, III and IV.
Fig. 4 details the location and relative size of these planted flaws;
52 spherical voids of diameters ranging from U 0.03 mm to U
0.5 mmwere created in each impeller. These dimensions were cho-
sen to represent the typical lack-of-fusion flaw formation in LPBF
[5]. There were 13 embedded voids in each quarter sector (quad-
rant) of the impeller. Voids were created by switching the laser off.

2.1.2.3. Case III – Flaw formation due to machine faults (Lens
Delamination). Case III emulates flaws caused due to machine
faults. In this work we study a particular type of machine flaw
called lens delamination, which results from degradation of the
optical coatings on the f-h lens of the LPBF machine, and subse-
quently creates an anomaly in the focusing of the laser in corre-
sponding regions of the powder bed. In LPBF machines, the f-h
lens is frequently cleaned and replaced after a certain number of
duty cycles as its performance degrades. Factors such as soot
agglomeration and ejecta from the process can coat the window
of the f-h lens [9,51]. Anomalies in the laser focus on account of
chromatic aberrations in the f-h lens are reported by Thombansen
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et al. [52]. The test parts in this work were produced with a dam-
aged optical coating on f-h lens, which affected laser focus at two
specific surface regions during processing of Impeller III (described
in Fig. 27, Sec. 3.3.3). The inconsistent laser focus due to lens
delamination were linked to formation of lack-of-fusion flaws.

Lastly, in closing this section, we note that in LPBF the relative
positions of the part on the build plate effects flaw formation

and the process signatures [26]. In this work, the foregoing effect
is controlled by producing the base region of Impeller I, II, and III
under identical conditions. Further, parts were examined with X-
ray computed tomography analysis to affirm that flaws were not
created due to positional effects.

2.1.3. Time between layers (TBL)
An important consideration in LPBF is the time between layers

(TBL), which is the cycle time elapsed between the melting of two
consecutive layers. The TBL, also called inter-layer time, is a func-
tion of the laser velocity, scanning pattern, the surface area of a
layer scanned by the laser, and the layer recoating time [22,26].
The layer recoating time was maintained constant at 10 s in this
work.

The TBL influences the thermal history of the part. A longer TBL
allows for a longer cooling time between layers, which in turn
influences the microstructure evolved and thermal-induced resid-
ual stresses [22,26]. In other words, the TBL is coupled to the phys-
ical properties of the part. Moreover, the TBL must be accurately
estimated before printing the part as it is a critical input to the
part-level simulation model used in this work [22]. The TBL was
estimated before the build from a slicing software simulation (akin
to a G-code emulator).

Fig. 2. (Top) Cross section of an impeller showing the three build sections: base, mid, and fin. The cooling channel located in the base and mid-section also visible. (Bottom) A
representative impeller resulting from the work, and the build layout.

Table 1
LPBF Process parameters used for building the four impeller-shaped parts in this work
on the EOS M290 LPBF machine.

Process Parameter Values [units]

Laser power (P) Varies per part (see Fig. 3)
Scanning Speed (v) 1083 [mm s�1]
Hatch spacing (h) 0.09 [mm]
Layer thickness (d) 0.02 [mm]
Stripe overlap 0.12 [mm]
Stripe width 5 [mm]
Scanning strategy Island scanning (EOS M290 standard)
Build atmosphere Argon
Build plate Preheat temperature 110 �C
Material Properties Values [units]
Material type, Praxair TruForm 316 SAE 316L, 30 mm mean Particle size
Oxygen level (maximum threshold) less than10,000 [ppm]
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Fig. 5 presents the TBL values for Impeller I as a function of the
layer height. The TBL was identical for all four impellers. Due to the
variable cross section of each layer, the TBL is not constant, but
changes from layer to layer. In this work, the surface area of the
impeller scanned by the laser decreases with the build height
and therefore there was a reduction in the TBL with layers, as
shown in Fig. 5.

Three distinct phases are observed in the TBL corresponding to
the three sections of the parts – base, mid and fin. In addition, sev-
eral momentary peaks caused by upskin and downskin contour fin-
ishing parameters are observed. Herein, upskin surfaces refer to
regions where unmelted powder exists above a layer. Conversely,
downskin layer are those which have unmelted powder below.
Typically, upskin and downskin regions in LPBF are processed at
a reduced velocity compared to the bulk of the part to improve
the surface finish.

2.1.4. Post-process characterization
The nature and severity of flaw formation for each of the four

impellers resulting from the aforementioned three cases are quan-
tified and characterized through X-ray computed tomography
(XCT) and metallurgical analysis. These are described in In Sec.
2.3.3. The XCT analysis allows estimation of the location, distribu-
tion, severity, and size of flaw formation inside the part in a non-
destructive manner. Subsequent to XCT, each impeller was cross-
sectioned, polished and etched for materials characterization. The
characterization included optical microscopy (microstructure and

type of flaw), scanning electron microscopy (surface texture), and
electron backscatter diffraction (evaluate size and orientation of
grains).

2.2. In situ monitoring

2.2.1. Sensing array
A schematic of the on-axis sensing system integrated into an

EOS M290 LPBF system is provided in Fig. 6. The sensing array con-
sisted of three photodetectors that were instrumented coaxial with
the laser path [53,54]. This system work had a Lagrangian refer-
ence frame measurement, as the sensor observations are obtained
by following the meltpool, as opposed to a stationary or Eulerian
reference frame in an off-axis sensor where the meltpool moves
across the field of view of the sensor [11].

The sensor array was designed to measure the spectral emis-
sions from the meltpool region. The spectral emissions from the
meltpool were correlated to the meltpool temperature. Two types
of process signatures were derived from the three photodetectors.
The first metric is termed Thermal Energy Planck (TEP), and the sec-
ond metric is termed as Thermal Energy Density (TED). The key dif-
ference in the TEP and TED signatures results from the use of
optical filters.

To explain further, the TEP measures the ratio of the signal
intensities of two photodetectors equipped with band-pass filters
close to the infrared spectrum. The wavelength of the two pho-
todetectors were 650 ± 5 nm (k1) and 700 ± 5 nm (k2). These band-

Fig. 3. Case I - four impellers are produced under different laser power conditions to mimic the effect of process drifts.

Fig. 4. Case II – Voids are embedded into impellers II, III, IV to emulate cyber-physical intrusions. There are total 52 voids planted in a part; 13 spherical-shaped voids are
embedded in each quadrant sector of the impeller. The voids have of diameter varying from U0.03 mm to U0.5 mm by switching off the laser power.
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pass frequencies are chosen with respect to the peak spectral radi-
ance obtained from Planck’s law and the photodetectors peak
responsivity. The measured intensities at these two respective fre-
quencies are labeled Sk1 and Sk2.

Specifically, the TEP = log10 (Sk1/Sk2). Since, the temperature of a
body is proportional to radiated intensity, the TEP measurement is
proportional to the temperature of the meltpool region, with mate-
rial emissivity as the proportionality constant. However, in practice
the material emissivity is not a constant, but depends on the sur-
face roughness and temperature of the body [40]. Hence, using
the ratio of the intensities in the TEP signatures at two different
wavelengths has the effect of canceling the effect of material
emissivity.

The underlying physics of the TEP metric is summarized in the
context of Fig. 7. The TEP signatures are akin to optical emission
spectroscopy measurements detailed in recent works by Nassar
et al. as they capture radiant energy corresponding to specific
wavelengths in the electromagnetic spectrum [55–57]. As
explained in Fig. 7, as a material is heated, its electrons transition
to a higher energy state. On returning to its previous (lower)
energy state, the electron emits a photon. The wavelength of the
photon (k) released is in accordance with the Planck-Einstein rela-
tionship E = hck-1. The photodetectors from which the TEP signa-
ture is obtained are bandpass filtered to detect these emissions
resulting from material fusion within a specific frequency (wave-
length) range. The intensity of these radiated emissions is directly
proportional to the temperature of the heated body. The TEP signa-
ture captures variations in the meltpool temperature.

The third photodetector, from which the TED signature was
obtained does not filter the optical emissions and captures the
broadband radiation from the return path of the laser. The TED
metric, represents the data acquired by a third photodetector
which does not have an optical band pass filter, and hence captures
emissions over the visible to near-infrared range of the electro-
magnetic spectrum [41]. The TED metric is intended to detect the
broadband energy emissions from the meltpool region.

The TEP and TED measurements are acquired continuously
throughout the build at a sampling rate of 200 kHZ and 100 kHz,
respectively. For the laser scan velocity of �1083 mm�s�1 used in
this work, approximately 200 TEP and 100 TED readings were
acquired per millimeter length scanned by the laser. Data acquisi-
tion was initiated at the start of a layer, and each sample measure-
ment was correlated to the build location based on the location
feedback from the laser Galvano-mirror, i.e., the location where
the meltpool senor data is acquired is registered to the position
of the laser.

2.2.2. Sensor calibration
We note that the sensor array used in this work does not pro-

vide an absolute temperature reading and must be calibrated with
a known temperature source. Calibration of the sensor signatures
was performed using a tungsten ribbon filament strip lamp. The
lamp was first compared to a NIST traceable source between
800 �C and 2,300 �C. The lamp was then installed within the LPBF
machine with the laser galvanometers aligned to have the lamp
centered within their field of view. Using a controlled power
source, the lamp was brought to temperature set points between
800 �C and 2,300 �C in 100 �C increments. For each temperature
set point an in-process measurement with the sensing system
was performed. The calibration process was replicated a total of
three times.

In Fig. 8 the setpoint of the tungsten strip lamp is plotted as a
function of the observed TEP signature for three independent repli-
cations. As noted in Sec. 2.2.1, concerning the y-axis of Fig. 8,
TEP = log10 (Sk1/Sk2), where Sk1 and Sk2 are the intensities acquired
by the two photodetectors at k1 = 650 nm and k2 = 700 nm. Thus, a

Fig. 5. The time between layers (inter-layer time) of the test parts estimated from
the slicing software.. The time between layers reduces during the build in
proportion to the surface area scanned. The fin-section has the smallest surface
area, and hence the laser requires the least time (less than 5 s) to scan layers in the
fin region. The time to recoat a layer is not included in this plot. The recoat time is
constant at 10 s per layer.

Fig. 6. Schematic of the on-axis sensing setup instrumented on an EOS M290 LPBF
system. The system consists of three photodetectors. Two photodetectors are
bandpass filtered and used to obtain a signature termed Thermal Energy Planck
(TEP). The third photodetector, which is not filtered, is used to measure the
broadband emission from the chamber termed Thermal Energy Density (TED).
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relationship was obtained which showed that the TEP measure-
ment is proportional to the surface temperature (R2 � 99%). This
relationship serves as the basis for normalizing the TEP signatures
into an absolute meltpool temperature between 1800 �C and
2300 �C. This meltpool temperature range is observed in the LPBF
of stainless steel 316L [58]. Given the broadband nature of the TED
signature, and because the effect of emissivity is not negated, con-
version of the TED to an absolute temperature is not appropriate. In
closing this section, we note that the calibration was done with a
black body radiation reference source (tungsten filament strip
lamp). As the TEP measurements are calibrated in the absence of
an actual part and powder material, hence, we eschewed conver-
sion of TEP measurements to absolute temperature. In our future
works we will calibrate the TEP measurements to an absolute tem-
perature scale by calibrating the sensor array with an actual build.

2.2.3. Data sampling and representative measurements
The TEP and TED measurements were acquired continuously

throughout the build at a sampling rate of 200 kHZ and 100 kHz,
respectively. An example of the TEP sensor measurements, consol-
idated in terms of 2D color-scaled images for layers 60 (1.2 mm),
450 (9 mm), and 750 (15 mm) of the build is shown in Fig. 9.
The representative data for Impeller I from layer 1 to 720 in steps
of 90 layers is shown in the first three rows of Fig. 9. The resolution
of the data is close to 125 lm� 125 lm per pixel image. Fig. 9(bot-
tom row) shows the TEP data consolidated for all four impellers.
The occurrence of lens delamination in Impeller III is evident in
the bottom row of Fig. 9 demarcated by the cold spots in the
north-west and south-east quadrants of Impeller III.

To obtain a temporal (1D) trend of sensor data as a function of
time, the TEP and TED signatures were sampled for specific spatial
regions of the part shown in Fig. 10. The measurements at these
regions were used as inputs to the graph theory approach. In prac-
tice, several hundred such critical regions of the part can be sam-
pled and monitored in parallel, without sacrificing computational
efficiency, as the graph theory approach simulates the thermal his-
tory for the entire volume of the part. In this work, temperature
data over three types of locations were sampled: (i) locations with-
out any artificially planted flaws, (ii) locations where flaws were
planted, and (iii) regions where lens delamination was suspected.

The sampled regions are demarcated in Fig. 10(left). The sample
area equates to a total of 2 pixel � 2 pixel in terms of the sensor
data on the surface of the current layer deposited on the part. This
sampled area corresponds to 250 lm � 250 lm consisting of 50
TEP and 50 TED measurements per layer. These measurements
with the sampled area were subsequently averaged and a single
average temperature readings is presented for the layer. The sam-
ple area was selected to contain the narrow cross-section of the fin.
Sampling near the boundaries was avoided to reduce image blur-
ring and resolution-related errors. In the base and mid sections
of the impeller, the sample area was held in the same location
for each layer. The sample area for the fin was relocated as shown
in Fig. 10 with each layer to accommodate the changing section of
the fin.

The representative TEP and TED signatures acquired in the
region without embedded flaws for Impeller I are shown in
Fig. 11. The temperature, and as a consequence the TEP signature
values increase as a function of the build height even though the
energy density is held constant due to the following two reasons.

Fig. 7. Concept of measuring the meltpool temperature using emissions from a bandpass-filtered photodetector.

Fig. 8. Curve relating TEP = log10 (Sk1/Sk2)vs. temperature setpoints on the tungsten
strip lamp signatures for three replications. The TEP is directly proportional to the
absolute temperature (R2 � 99%). The calibration curve is reported for three
independent replications.
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First, the time between layers (TBL) as observed in Fig. 5 progres-
sively decreases from 120 s in the base, to 80 s for the base, and
finally 20 s in the fin section. Hence, there is not sufficient time
between layer for the heat to be conducted from the fin region.
Second, the cross-section and surface area of each layer in the fin
region are considerably smaller than that of the base and mid sec-
tions, which exacerbates heat buildup. The resulting uneven tem-
perature distribution with the impeller would lead to
microstructure heterogeneity and inconsistent properties [22].

The TED signature, however, does not respond to change in the
part shape. The inherent and significant variation in the TEP signa-
ture as a function of the build height, despite maintaining a steady
process conditions, underscores the importance of accounting the

effect of shape of the part, and in a broader context, the fundamen-
tal thermal physics of the process when devising flaw detection
algorithms.

2.3. The digital twin approach

The realization of the digital twin hinges on seamless integra-
tion of two phases, as delineated in Fig. 12. These phases are:

� Phase I - mirror-as-you-build - using graph theory to predict the
thermal history of the entire part before it is printed. The sim-
ulation timescale is a fraction of the actual time to print the part
(7 min vs. 16.5 h).

Fig. 9. (top three rows) 2D Layer-by-layer TEP measurements for Impeller I following the melting of the layer. (bottom row) TEP measurements compiled for various layers
for all four impellers. Lens delamination is observed in Impeller III in the demarcated regions. Due to delamination cold spots are formed, hence, the measured intensity of TEP
signatures is reduced. These cold spots can potentially lead to lack-of-fusion porosity.
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Fig. 10. The spatial ragions where sensor data are sampled is demarcated with a blue strip. The sampled area is 2 pixels � 2 pixels (250 lm � 250 lm). Sampled area for
regions with embedded flaws are enclosed in red.

Fig. 11. Representative process signatures sampled at locations without embedded flaws for Impeller I. (left) TEP and (right) TED data. The TEP signature increases as a
function of the build height. The increase corresponds to the decrease in the TBL shown in Fig. 5. The TED signature given its broadbrand nature does not respond to change in
part shape.
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� Phase II – qualify-as-you-build - detecting flaw formation during
the process by updating the thermal history prediction obtained
from Phase I layer-by-layer based on in-process sensor signa-
tures (TEP, Sec. 2.2, Fig. 11).

As an analogy with statistical process control, Phase I – mirror-
as-you-build – encapsulates the common cause variation by pre-
dicting the thermal history of a part in its flaw-free state or nom-
inal state using the graph theory approach and in situ sensor
data. The thermal history of the nominal, flaw-free state represents
natural variations in the thermal history on account of the chang-
ing cross-section of the part along with inherent stochastic (white)
noise in the process.

In other words, in Phase I, the graph theory model is trained
(calibrated) to predict the thermal history of an impeller produced
under ideal conditions. In this work, Impeller I represents the flaw-
free or nominal condition. Thus, Phase I predicts the layer-by-layer
thermal history of Impeller I represented as Tnom lð Þ for each layer l.
The corresponding meltpool temperature for the layer l for Impel-
ler I is obtained from the TEP signature, labeled TEPnom (l), is incor-
porated into the graph theory model.

Phase II, called qualify-as-you-build, is intended to detect flaw
formation in a new part (of a similar shape). Phase II therefore cap-
tures special cause variation in the process which are indicative of
impeding flaw formation. In Phase II, the layer-by-layer thermal
history of a new part Tnew lð Þ is predicted by instantaneously updat-
ing the thermal history of the nominal conditionTnom lð Þ based on its
corresponding layer-by-layer TEP and TED signatures TEPnew lð Þ and
TEDnew lð Þ , respectively. In this work the new part is represented by
Impellers II, III, and IV. A process drift, symptomatic of an incipient
flaw is indicated if the thermal history of a new part Tnew lð Þ devi-
ates considerably from the thermal history of the nominal flaw-
free Impeller I, Tnom lð Þ. Each of the two phases is discussed in detail
herewith.

2.3.1. Phase I – Mirror-as-you-build
2.3.1.1. Background - the graph theory approach for thermal modeling
in LPBF. The thermal aspects of the LPBF encompass conductive,

convective, and radiative heat transfer across three scales, namely,
meltpool scale (less than100 lm),meso-scale track-level (100 lm–
1 mm), and part-scale (>1 mm) [14,16,17]. It is computationally
cumbersome to capture effects from all three scales within a single
model. Particularly, meltpool modeling in LPBF is exceedingly time
consuming and requires high performance computing [14,17]. In
this work the part-level thermal history is modeled using graph
theory, while the meltpool-level phenomena is observed through
the TEP and TED signatures.

To predict the part-level thermal history it is necessary to solve
the heat diffusion equation [59] as written in (1),

qcp
z}|{
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Properties
@T x; y; z; tð Þ

@t
� k

@2

@x2
þ @2

@y2
þ @2

@z2

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Shape of the Part
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v � h� d

¼ EV

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Parameters

ð1Þ
here T is the temperature rise above the ambient temperature.
The accompanying initial and boundary conditions are given by,

T x; y; z;0ð Þ ¼ 0 initialconditionð Þ
@T
@n ¼ 0 onboundaryð Þ: ; ð2Þ

Solving the heat diffusion equation results in the temperature
T x; y; z; tð Þat a location (x, y, z) and time instant t inside the part.
The energy density [J�m�3], EV , is the energy needed to melt a unit
volume of material and is a function of laser power (P [W]), dis-
tance between adjacent tracks of the laser (h) [m], translation
velocity (v) [m�s�1], and layer thickness (d) [m]; these are control-
lable parameters of LPBF. The material properties are density q
[kg�m�3], specific heat cp[J�kg�1�K�1)], and thermal conductivity k
[J�m�1� s�1�K�1]. The part shape is represented in the second
derivative term, called the continuous Laplacian.

In the context of LPBF, FE analysis has been used to solve the
heat diffusion equation [15,23,24,60–62]. Meshing of the part
geometry is the computationally time-consuming aspect of such
FE-based thermal analysis in LPBF. This is because the part shape
changes continually with deposition of each new hatch or layer

Fig. 12. The concept of the digital twin applied to practical impeller-shaped parts. The approaches involves two phase. In Phase I, called the mirror-as-you-build phase, the
part-level thermal history for a flaw-free impeller is predicted using a graph theory. In Phase II, the qualify-as-you-build phase, the thermal history of a new part is obtained
and monitored by updating the thermal history of a nominal part with in-situ sensor data.
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and has to be re-meshed. Accordingly, there is an urgent need for
approaches that eschew the meshing steps in FE [63–65].

The graph theory approach reduces the computational burden
by solving a discrete version of the heat diffusion equation. The
resulting graph theory solution to the heat diffusion equation, as
explained in our prior work, is given as [22,44,46–48],

T x; y; z; tð Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

3D
Thermal History

¼ /e�aKs/0
zfflfflfflfflffl}|fflfflfflfflffl{
Part

Shape

�To

z}|{
Input

Temperature ð2Þ

Eqn. (2) entails that the heat diffusion equation is solved as a
function of the eigenvalues (K) and eigenvectors (/) of the Lapla-
cian Matrix (L), constructed on a discrete set of nodes. Also, from
Eq. (2), the thermal history can be surmised to be a function of
two aspects, the shape of the part represented by /e�aKs/

0
and

the input temperatureTo. In this work To is the meltpool tempera-
ture obtained from the TEP signature. The term s on the exponent
is the time between layers (TBL), and a ¼ k=qcp. As noted previ-
ously in Sec. 2.1.3, in the context of Fig. 5, the TBL is not constant,
but varies in proportion to the scanned surface area. The TBL was
estimated a priori to printing using a slicing software. The graph
theory approach has the following three advantages over FE-
based simulation in LPBF [23,24].

(1) Elimination of mesh-based analysis: The graph theory
approach represents the part as discrete nodes, which eliminates
the tedious meshing and re-meshing steps required in the element
birth-and-death approach typically used in the FE-based thermal
analysis of LPBF.

(2) Elimination of matrix inversion steps. While FE analysis rests
on matrix inversion at each timestep for solving the heat diffusion
equation, the graph theory approach uses matrix multiplication,
which greatly reduces the computational burden. As will be
demonstrated in Sec. 2.3.3, the computation time for the Phase I
prediction of the thermal history is less than 7 min, which is less
than 1% of the actual build time of 16.5 h.

(3) Elimination of time stepping. The time step s in the exponent
of Eqn. (2) can be set to any value, without having to step through
(simulate) smaller time instances which requires remeshing in FE
[23,24].

2.3.1.2. Predicting the thermal history of LPBF parts using graph
theory. In this section, we detail the manner in which the graph

theory approach is applied for thermal modeling in LPBF. There
are five steps in the approach, four of which are summarized in
Fig. 13. In our previous work we have verified and validated the
graph theory approach with finite element, finite difference, exact
Green’s function analysis, and experimental observations
[22,44,46–48]. These prior publications show that the graph theory
approach converges 5 to 10-times faster than FE analysis, and the
predictions are within 5% (mean absolute percentage error, MAPE)
of experimental measurements.

The computationally efficient nature of the graph theory
approach facilitates computation of the thermal history within
1/10th of the time required to build a part. This was recently
demonstrated ib a large-scale (U155 mm � 35 mm) version of
the impeller used in this work [44].. Herewith we provide a brief
summary of the approach for the convenience of the reader.

Step 1: Convert the entire part into a set of discrete number of
nodes (n) that are randomly allocated through the part.

The part is sliced into layers and a fixed number of n spatial
locations (i.e., nodes) are sampled at random locations in each
layer. The position of these nodes is recorded in terms of their spa-
tial coordinates (x,y,z). In the ensuing steps, the temperature at
each time step is stored at these nodes. The random sampling of
the nodes bypasses the expensive meshing of FE analysis and is
one of the key reasons for the reduced computational burden of
the graph theory approach.

Step 2: Construct a network graph among randomly sampled
nodes.

Consider two nodes, pi and pj whose spatial Cartesian coordi-
nates are ci � xi; yi; zið Þ and cj � xj; yj; zj

� �
, respectively; pi and pj

are connected by an edge whose weight ai;j is given by,

ai;j ¼ e�
ci�cjð Þ2
r2 : ð3Þ

The edge weight, aij represents the normalized strength of the
connection between the nodes pi and pj and has a value between
0 and 1; r2 is the variation of the distance between all nodes that
are connected to each other. We only connect a node to a certain
number of its nearest neighboring nodes. First, we begin by con-
necting all nodes within a certain Euclidean radius of l called the
characteristic length. The characteristic length depends upon the
thinnest cross-section of the part, and in this work, it corresponds
to the thickness of the fin section, l = 2 mm.

Fig. 13. Schematic depiction of four of the five steps in the graph theory approach for predicting the thermal history in LPBF.
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Next, within the neighborhood of l, we only retain edges
between the nearest ten nodes (g = 10). The number of nearest
neighbors (g) is calibrated from experiments shown in previous
work [44,48]. From a physical perspective, the edge weight ai,j
embodies the Gaussian law - called heat kernel - in the following
manner. The closer a node pi is to another pj, exponentially stron-
ger is the connection (ai,j) and hence proportionally greater is the
heat transfer between them.

The matrix, formed by placing ai,j in a row i and column j, is
called the adjacency matrix, A = [ai,j], where N is the total number
of nodes.

A ¼

0 a1;2 a1;3 � � � a1;N
a2;1 0 a2;3 � � � a2;N
a3;1

..

.

aN;1

a3;2

..

.

aN;2

0
..
.

aN;3

� � �
. .
.

� � �

a3;N

..

.

0

2
66666664

3
77777775

ð4Þ

From the adjacency matrix (A), the discrete graph Laplacian
matrix L will be obtained using the following elementary matrix
operations. The degree of node pi is computed by summing the
ith row of the adjacency matrix A,

di ¼
X

8jai;j ð5Þ

The diagonal degree matrix D is formed from di’s as follows;
where n is the number of nodes,

D ¼
d1 � � � 0

..

. . .
. ..

.

0 � � � dn

2
664

3
775 ð6Þ

From the degree of node di, the Laplacian lij at node i is defined
as follows:

li;j ¼def di � ai;j ð7Þ
The discrete Laplacian L can be cast in matrix form as,

L ¼def D� Að Þ ð8Þ

L ¼

þd1� �a1;2 �a1;3 � � � �a1;N
�a2;1 þd2� �a2;3 � � � �a2;N
�a3;1

..

.

�aN;1

�a3;2

..

.

�aN;2

þd3�

..

.

�aN;3

� � �
. .
.

� � �

�a3;N

..

.

þdN�

2
66666664

3
77777775

Finally, the Eigen spectra of the Laplacian L, is :

L/ ¼ /K ð9Þ
Step 3: Simulate the deposition of the entire layer and diffuse

the heat throughout the network.
To aid computation, the simulation proceeds in the form of a

superlayer (metalayer). In this work, we used 10 actual layers each
of height 50 mm for one superlayer. The thickness of each super-
layer was therefore 0.5 mm. The superlayer thickness is calibrated
in Sec. 2.3.3.

The heat diffuses to the rest of the part below the current layer
through the connections between the nodes. If the temperature at
each node is arranged in matrix form, the steady state temperature
T after time t (where t = time between layers, TBL, Fig. 5) is
obtained as a function of the eigenvectors (/) and eigenvalues
(K) of the Laplacian matrix (L) of the network graph, viz., Eqn.
(2) is repeated herewith, with a tunable parameter called the gain

factor (g). The gain factor is also set from our previous work with
SAE 316L[44,48].

T x; y; z; tð Þ ¼ /e�agKs/
0
T0 ð10Þ

In our previous works, the melting temperature of the material
was used as the input temperature T0 [22,44,46–48]. While this
steady state approximation is satisfactory for the prediction of
the end-of-layer thermal history, however, for flaw detection it is
necessary to consider the meltpool-level temperature. In other
words, to predict incipient flaw formation the graph theory
approach must be modified to accommodate the instantaneous
meltpool temperature obtained from the in-process sensor, as
opposed to the steady state (constant) material melting tempera-
ture [8,14].

Accordingly, the meltpool temperature obtained from the (cali-
brated) TEP sensor signatures over sampled region of a layer (l).
The TEP is incorporated input the graph theory solution to the heat
diffusion equation by substituting T0 ¼ TEP(l) in Eqn. (10),

Tnom x; y; z; tð Þ ¼ /e�aKs/
0 � TEPnom x; y; z; tð Þ ð11Þ

Setting SðlÞ ¼ /e�aKs/
0
, and the corresponding meltpool tem-

perature TEPnom lð Þ the thermal history for layer l of a nominal, flaw
free part, Tnom lð Þ, is obtained as,

Tnom lð Þ ¼ SðlÞ � TEPnom lð Þ ð12Þ
We note that the heat diffusion equation does not account for

heat loss due to radiation and convection at the top boundary of
the part. Hence, after the temperature of each node is obtained,
convective and radiative thermal losses are included for the nodes
on the top surface of each layer in Eqn. (13). Accordingly, we
demarcate the nodes at the top boundary, and adjust the temper-
ature of the boundary nodes (Tb) using the lumped capacitive
theory:

Tb ¼ e� h Dtð Þ Tbi � T1ð Þ þ T1 ð13Þ
where, T1 (=300 K) is the temperature of the surroundings, Tbi is

the initial temperature of the boundary nodes, Tb is the tempera-
ture of the boundary nodes after heat loss occurs, Dt is the dimen-

sionless time between laser scans, and h is the normalized
combined coefficient of radiation (via Stefan-Boltzmann law) and
convection (via Newton’s law of cooling) from boundary to the sur-
roundings [66].

Step 4: Step 3 is repeated layer-by-layer until the part is built.
Step 5: Obtaining the instantaneous surface temperature from

the simulation.
The thermal history Tnom for the nominal, flaw-free impeller

Impeller I obtained from Eqn. (12) is depicted in Fig. 14(a). The
thermal history for one layer is shown in Fig. 14(b). These temper-
ature trends are plotted for the flaw-free sampled location shown
in Fig. 10.

In the cooling curves shown in Fig. 14, two distinctive aspects
are observed. The first is the transient temperature instantly after
the laser strikes the sampled area. The second is the lower temper-
ature reached at the end of a layer (cycle) before the laser returns
for melting the next layer.

In this work, once the cooling curve is obtained, the tempera-
ture response after 0.1 s following the laser strike is extracted. This
output temperature, Tnom lð Þ, which captures the surface tempera-
ture immediately following a laser strike, is called the transient
or instantaneous temperature.

The reasoning for selecting the transient (instantaneous) tem-
perature to represent Tnom lð Þ, is provided in terms of Fig. 15. In
Fig. 15 the response is plotted for two different time scales follow-
ing a laser strike. These are 0.1 sec after the laser strike in Fig. 15
(a), called instantaneous surface temperature; and after the layer
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is deposited, called end-of-cycle surface temperature in Fig. 15(b).
Comparing Fig. 15(a) with Fig. 15(b), it is evident when the simu-
lation output is sampled at the end-of-cycle temperature, the effect
of part geometry on the thermal history dominates, and the local
temperature variations are occluded. Since, the local temperature
is critical to detect process flaws, therefore, the output tempera-
ture obtained 0.1 s after the laser strike is chosen to represent
Tnom lð Þ.

The consequence of using the end-of-cycle surface temperature
vs. the instantaneous surface temperature is further visualized in
Fig. 16 in terms of the three-dimensional temperature distribution
obtained from graph theory. The local temperature differences that
are evident in the graph theory simulation via the instantaneous

temperature Tnom are attenuated in the end-of-cycle thermal pro-
file, as the part has had time to cool.

It is noted that the instantaneous temperature in Fig. 15(a) sig-
nificantly exceeds the melting point of stainless steel SAE 316L
(�1370 �C to 1500 �C). This is to be expected, because, the meltpool
temperature is considerably above the melting point of the mate-
rial as observed by Hooper et al. [58]. Indeed, Khairallah et al.’s the-
oretical simulation indicates that the maximum meltpool
temperature in the LPBF of stainless steel exceeds the boiling point
[14]. Furthermore, the field of view of the sensing system used in
this work captures thermal phenomena in the meltpool region.
The meltpool region, apart from the physical meltpool, encom-
passes the meltpool plume and spatter (ejecta), whose

Fig. 14. The thermal simulation of the part with input from the TEP sensor, Eqn. (12). (a) The output for the entire 845 layers of part, (b) zoomed-in section of the thermal
history, showing the two peaks resulting from the laser strike, and the plateau at the end of a layer (end-of-cycle temperature). In this work, we sampled the simulation
output 0.1 s after the laser strike, this output is the instantaneous temperature Tnom(l).

Fig. 15. Thermal history for the entire part (a) sampled at 0.1 s after the laser strikes the part, and (b) at the end-of-cycle temperature. The instantaneous surface temperature
in (a) is evocative of the short-time process dynamics dominated by the laser-meltpool interactions, and exceeds the melting temperature of the material. The end-of-cycle
temperature trends in (b) are influenced by the geometry of the part. In both cases the temperature increases with the build height, owing to the decrease in the time between
layers, and reduced cross-section.
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temperatures are observed to exceed the boiling point of the
material [67].

In both Fig. 15 and Fig. 16 it is noted that the surface tempera-
ture increases along the build direction, and peaks near the fin
region. This is because, the fin region has both the smallest
cross-section and the least time between layers (TBL, Fig. 5). The
TBL reduces to 20 s in the fin region from 120 s and 80 s for the
base and mid sections of the impeller respectively. The reduction
in cross-section and smaller time to cool between layers (decrease
in the TBL) lead to heat buildup in the fin section.

Although, as shown in Fig. 14, the temperature at the instant of
the laser strike approaches 2000 �C, the instantaneous temperature
Tnom in Fig. 15(a) and Fig. 16 reach a maximum value of 1900 �C
due to two reasons. First, the temperature is measured 0.1 s follow-
ing the laser strike. Second the temperature is averaged over a sur-
face area of 250 lm � 250 lm as explained in Sec. 2.2.3.

2.3.2. Phase II (Monitoring Phase) – Qualify-as-you-build
The aim of Phase II is to detect flaw formation when building a

new part of the same shape, i.e., monitor part quality of another
impeller as it is being printed. For this purpose, Phase II uses the
thermal history (Tnom) of the nominal flaw-free part obtained off-
line in Phase I in Eqn. (12). Consequently, the thermal model pre-
dictions from Phase I are not static and are updated in layer-by-
layer based on streaming sensor data to detect flaw formation.
As the following will show, the monitoring step does not require
re-computation of the thermal history using the graph theory
approach and is nearly instantaneous.

The interlinking of Phase I – mirror-as-you-build, and Phase II –
qualify-as-you-build is represented schematically in Fig. 17. It con-
ceptually depicts the methodology of updating the already existing
thermal history predictions (Tnom lð Þ) for Impeller I obtained in
Phase I contingent on the meltpool temperature at layer l for the
new part, TEPnew lð Þ. The rationale is that the thermal history of a

new part, Tnew lð Þ (for Impeller II, III, and IV), is liable to contain both
the common cause variation inherent in the process (viz., captured
in the thermal history of Impeller I) and the special cause variation
resulting from flaws.

The approach to update the thermal history for a new part is as
follows. At the outset we write the temperature Tnew at the sam-
pled location at layer l using the same reasoning in Phase I, Eqn.
(12).

Tnew lð Þ ¼ SðlÞ � TEPnew lð Þ ð14Þ
The term S is obtained from Eqn. (12) from Phase I,

asSðlÞ ¼ Tnom lð Þ
TEPnom lð Þ

Substituting the foregoing for S into Eq. (14),

Tnew lð Þ ¼ Tnom lð Þ � TEPnew lð Þ
TEPnom lð Þ ð15Þ

The above equation is simplified on writing RTEPðlÞ ¼ TEPnew lð Þ
TEPnom lð Þ

Tnew lð Þ ¼ Tnom lð Þ �RTEPðlÞ ð16Þ

In other words, the thermal history of a new part at layer l,
Tnew lð Þ, is obtained by updating the thermal history of the nominal
part Tnom lð Þ, and relative change RTEPðlÞ in the in-process meltpool
temperature of the new part TEPnew lð Þ at layer l with respect to
the nominal part TEPnom lð Þ.

Next, we incorporate the effect of changes in the laser power
(energy density) relative to the nominal impeller, through the
TED sensor measurements as follows,

Tnew lð Þ ¼ Tnom lð Þ �RTEP � TEDnew lð Þ
TEDnom lð Þ ¼ Tnom lð Þ �RTEP �RTED ð17Þ

Fig. 16. Comparison of the simulation result when using the instantaneous temperature (left) and the end-of-cycle temperature (right). The end-of-cycle temperature
distribution is lower because the laser-added heat has time to diffuse throughout the part.
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It is necessary to incorporate both the TEP and TED data to
update the thermal history as these provide complementary infor-
mation. As will be evident in Sec. 3.2, the TEP captures the interac-
tion of the laser and powder; it is sensitive to the effect of part
shape on the thermal history. Whereas TED captures variation
between parts resulting from change in the global energy density.

While the theoretical global energy density (Ev) can be esti-
mated as a function of the laser power (P), velocity (v), hatch spac-
ing (h), and layer thickness (d), Ev = P�v-1�h�1�d-1 the
measurements captured by the TED sensor are capture the actual
energy density applied to a layer. Moreover, the TED data is readily
integrated into the graph theory thermal model since it is unitless.

Since, the thermal history of the nominal part Tnom lð Þ has been
obtained in Phase I, the computation time in obtaining Tnew lð Þ is
infinitesimal and can be completed before the next, (l + 1) layer
is deposited. The initial computational effort is expended to obtain
in Tnom lð Þ in Phase I, which is an offline phase. As detailed in the
next section Sec. 2.3.3, Phase I requires 7 min to converge on a
desktop computer compared to 16.5 h of actual build time. Finally,
flaw formation in new parts is detected by comparing the thermal
history of the new part Tnew lð Þwith the thermal history of the nom-
inal part Tnom lð Þ. For example, a large deviation in the thermal his-
tory of a new impeller from the nominal impeller at layer l, i.e.,
Tnom lð Þ � Tnew lð Þ, would be indicative of an incipient flaw.

2.3.3. Model parameters, calibration and convergence
The graph theory approach requires the calibration of three

model parameters, referring to Eq. (2), these are: the number of
nodes in terms of their density n [nodes�mm�3]; the number of
super layers (meta layers, SLT, [mm]) that are considered to be
deposited at the same time for computational efficiency; and the
gain factor g. In this work, the gain factor is identical to our previ-
ous work in which the graph theory approach was applied to 316L
stainless steel parts [44,48]. The model parameters are detailed in
Table 2.

Shown in Fig. 18(a) and (b) are the convergence characteristics
of the graph theory model as a function of the node density and
superlayer thickness, respectively. Increasing the node density
and reducing the superlayer thickness improves the prediction
accuracy at the cost of computational efficiency. The effect of the
node density and super layer thickness on the computational time
is reported in Table 3. For example, in Fig. 18(b) the convergence of
the model is tested for SLT ranging from 1 mm to 0.15 mm. An
appreciable degree of convergence is observed for SLT = 0.25 mm.

In this work, as reported in Table 3, the trends converge within
7 min with number of nodes set at 0.5 nodes�mm�3, and superlayer
thickness of SLT = 0.25 mm (12.5 actual layers, each of 0.020 mm).
At finer SLT = 0.20 mm and 0.15 mm, the computation time
increases significantly to 11 min and 13 min, respectively, for a
marginal difference in convergence characteristics. Thus, as a
tradeoff between computation and model resolution, we set
n = 0.5 nodes�mm�3 and SLT = 0.25 mm. The thermal history pre-
dicted from adopting these parameters are shown in Fig. 19 over-
laid on the normalized TEP signatures observed for Impeller I (the
TEP data from Fig. 11 are smoothened to match an SLT = 0.25 mm).
With SLT = 0.25 mm and node density n = 0.5 nodes�mm�3, the
graph theory approach accurately predicted the drop in tempera-
ture in the layers corresponding to the internal channel, as well
as towards the end of the fin region observed in the TEP data.

As a qualitative comparison, the graph theory approach was
corroborated with the commercial Netfabb software assuming
identical super layer thickness, and laser power and velocity.

As evident from Fig. 20, both the graph theory and Netfabb pre-
dict the retention of heat in the fin region of the impeller. The
graph theory predictions shown in Fig. 20 were obtained by assum-
ing a steady-state end-of-cycle melting temperature T0
of � 1370 �C (approximate melting point of SAE 316L), instead of
the instantaneous meltpool temperature Tnom used for flaw moni-
toring. This is because Netfabb, and other commercial LPBF soft-
ware, do not facilitate incorporation of the instantaneous
meltpool temperature.

Fig. 17. The two phases of the digital twin approach for detecting flaw formation. In Phase I, mirror-as-you-build, a baseline thermal history for a nominal flaw-free part is
established (Tnom). In Phase II, qualify-as-you-build, the thermal history of a new part Tnew is obtained by instantaneously updating the thermal history of the nominal-flaw
free part Tnow and the streaming data for the new part.

Table 2
The material properties and simulation parameters used in this work.

Material Properties Values

Convection coefficient part to
powder, hw [W�m�2� C]

1 � 10-5

Convection coefficient substrate
(sink), hs [W�m�2� C]

1.0 � 10-2

Thermal diffusivity (a) [m2/s] 3.0 � 10-6

Density, q [kg/m3] 8,190
Steady state melting point (T0) [�C] 1,370
Ambient chamber temperature, Tp [C] 90
Simulation Parameters Values
Characteristic length [mm] 2
Fixed number of nearest neighbors

(g)
10

Superlayer thickness (SLT) [mm] 0.25 (12 actual layers)
Node density, (n) [nodes�m�3] 0.5
Gain factor (g) [m�2] 2 � 105 from Ref. [44,48]
Computational hardware Intel Core i7-6700 CPU, @3.40 GHz

with 32 GB RAM.
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3. Results

3.1. Post-Process characterization

3.1.1. X-ray computed tomography
The four impellers were examined using XCT (NorthStar Imag-

ing, NSI) at voxel resolution of 26 mm. Shown in Fig. 21 are the
XCT section views for the four impellers. The corresponding flaw
volume as a percentage of the total volume are reported in Table 4.
These flaws were of the lack-of-fusion type given their characteris-
tic irregular shape, evident in the forthcoming Sec. 3.1.2. Lack-of-
fusion flaws are caused when the energy density is insufficient to
entirely consolidate the powder.

Impeller I (Nominal), which was processed with a laser power
fixed at 195 W had the least percentage flaw volume (0.01%). For
the rest of the parts the percentage flaw volume ranges from
0.08% to 0.11%. The flaws in Impeller II were predominantly clus-
tered near the fin region, corresponding to the transition in the
laser power from 195 W to 125 W. The clustering of flaws at a par-
ticular location was also observed in Impeller III. The clustering of
flaws in Impeller III was due to lens delamination. Lens delamina-
tion causes laser focus aberrations, leading to insufficient fusion. In
contrast, for Impeller IV, the lack-of-fusion flaws were evenly dis-
tributed throughout the part, as it was processed entirely at low-
level of laser power of 125 W.

3.1.2. Optical microscopy
The optical micrographs for cross-sections of the four impellers

after polishing and etching using Kalling’s #2 reagent are shown in
Fig. 22. Three regions of each impeller: base (A), mid (B), and fin (C)
were examined. Lack-of-fusion flaws, characterized by their irreg-
ular shape, and ranging between 30 lm to 100 lm in size are
observed in the optical micrographs.

Affirming the XCT analysis from Sec. 3.1.1, Impeller I produced
under nominal conditions (195 W laser power, 100 J�mm�3) did
not depict extensive lack-of-fusion flaw formation. Lack-of-fusion
flaws were prominent in Impeller II (nominal-Lo), and Impeller
IV (Lo-Lo). The reduction in laser power from 195W to 125 W dur-
ing processing of the fin section of Impeller II is the likely cause of

Fig. 18. The convergence studies with (a) effect of the node density (n) with super layer thickness (SLT) fixed at 0.25 mm, and (b)effect of SLT with node density fixed at
n = 0.5 nodes�m�3. In this work we set n = 0.5 nodes�m�3 and SLT = 0.25 mm.

Table 3
The effect of node density superlayer thickness on computation time. In this work we
selected a node density of 0.5 nodes�mm�3 and a 0.25 super layer thickness.

Node Density
[nodes mm�3]

Super Layer [mm] Total number of
Nodes

Simulation
Time [s]

0.1 0.25 (selected,
12.5 layers)

1407 23
0.3 4083 121
0.5 (selected) 6771 393
1 13,748 2393
0. 5 (selected) 0.15 6771 796

0.20 675
0.25 (12.5 layers,
selected)

393

0.35 277
0.45 181
0.5 179

Fig. 19. With super layer thickness (SLT) fixed at 0.25 mm, and node density n = 0.5
nodes�-3, the local response predicted from the graph theory approach closely
matches the observed TEP (normalized) trends.
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these lack-of-fusion flaws as the energy is insufficient for complete
consolidation of the material. In a similar vein, the processing of
Impeller IV at a reduced laser power of 125 W results in consider-
able lack-of-fusion.

The fin section of Impeller III, which was produced under
Nominal-Hi conditions, has a distinctively coarser microstructure
compared to its base and mid regions (of Impeller III). Moreover,

the grain size in the fin region of Impeller III was significantly coar-
ser relative to the fin regions of other parts. Such grain coarsening
is liable to occur on account of heat accumulation and is further
quantified in Sec. 3.1.3 [22].

To explain further, the fin region has the smallest cross-section
and the least time between layers (TBL). As noted from Fig. 5, for
the base and mid sections the TBL is nearly 120 s and 80 s, respec-

Fig. 20. The graph theory-derived steady state thermal history predictions compared with the commercial Netfabb output.

Fig. 21. X-ray computed tomography (XCT) images of the two quarter-sections of each of the four impellers. Impeller I produced under nominal conditions has few pores
(�0.01%), compared to Impellers II, III, and IV. In Impeller II the flaws tend to occur in the region between the mid and fin-section at the transition point when the laser power
is reduced from 195 W to 125 W. In Impeller III flaws are clustered in the region of lens delamination. Impeller IV is produced at 125 W which results in lack-of-fusion
porosity throughout the part.
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tively, compared to approximately 20 s in the fin region. The
increase in laser power from 195 W to 265 W, reduction in
cross-section, and decrease in the TBL combine to exacerbate the
heat accumulation in the fin region. The heat accumulation in
the fin region, which was predicted by the graph theory simulation
in the context of Fig. 15 and Fig. 16, explains the coarsening of the
grains in the fin section of Impeller III observed in Fig. 22.

In closing this section, we note the possibility of keyhole flaw
formation, particularly in the fin region of Impeller III when laser
power was increased to 265 W. However, keyhole flaw formation
was not captured either in the XCT (Fig. 21) nor in the optical
images (Fig. 22). This is because, keyhole porosity is typically smal-
ler than 30 mm [5]. Since, the resolution of the XCT in this work is
26 mm, its ability to detect keyhole porosity is rather limited. The

optical images are produced for one contiguous cross-section of
the impeller, given their rarity and small size, the presence of key-
hole porosity was not captured in the optical microscopy images.

3.1.3. Scanning electron microscopy (SEM) and electron backscatter
diffraction (EBSD)

Each of the four impellers was cross-sectioned along the build
direction using electro-discharge machining, and were prepared
by grounding, polishing, and etching (Adler’s reagent). Subse-
quently, the samples were examined with SEM and EBSD (FEI
Quanta 600-ESEM) to understand and quantify the variation in
grain size, crystallographic orientation (texture), and porosity. .
The samples were scanned at 15 kV, working distance of
21.2 mm, spot size of 5 mm, and scanning step size 1 lm; the
obtained results are shown in Fig. 23 and Table 5.

Results for Impeller I, viz., made under nominal laser power
parameters (195 W) manifests variations in the grain size between
the fin and base, as shown in Fig. 23. This is consistent with prior
explanations in the context of the XCT (Fig. 21) and optical micro-
graphs (Fig. 22) due to the differences in the cross-section of the
and the time between layers. The average grain size was found
to be larger in the fin section of Impeller I compared to the base
section, which could be explained by the heat retention in the fin
region, as predicted in the simulation (Fig. 15) and observed in
the in-situ monitoring data (Fig. 11). The SEM results in Fig. 23 also

Table 4
The flaw characteristics for each of the four impellers, including the flaw volume ratio.

Impeller Flaw
Volume
[mm3]

Total Part
Volume [mm3]

Flaw Volume
Ratio [%]

Impeller I (Nominal
Conditions)

1.29 18,497 � 0.01

Impeller II (Nominal-Lo) 19.10 � 0.11
Impeller III (Nominal-Hi) +

Lens Delamination
15.23 � 0.09

Impeller IV (Lo-Lo) 13.29 � 0.08

Fig. 22. Effect of change in processing conditions on the microstructure and porosity. Optical microscopy images are acquired at three regions of each impeller, corresponding
to (A) fin, (B) mid, and (C) base sections. The bottom-most row of images are zoomed-in views of the demarcated regions for each impeller. There are notably large number of
pores in the fin-section for Impeller II which was produced under the Nominal-Lo condition (195 W – 125 W). The fin-region of Impeller III, produced under Nominal-Hi
(195 W – 265 W) conditions has coarser microstructure compared to others. Impeller IV, which is produced under low power settings of 125 W shows presence of lack-of-
fusion porosity along its entire cross-section.
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reveal lack-of-fusion formation in Impeller I, albeit sparse, as high-
lighted with the yellow circles.

The grain sizes in Impeller II fin region were found to be smaller
than that of the base region, as observed in Table 5. This is consis-
tent with the fact that the laser power is decreased to 125 W from
195 W in the processing of the fin region. It is further seen
that h111i (note that all measurements reported herewith are
along the build direction) columnar grains in the base region have
a tendency of forming h101i grains as layers were added due to the
low laser power. This is possible to occur because the activation
energy necessary for reorientation and grain growth was not
reached, and the distribution of small equiaxial grains was
increased. For Impeller III, the use of higher laser power in the
fin region, in combination with the reduced time between layers
and cross-section area leads to heat accumulation, which explains
the large increase in grain size observed in Table 5 consistent with

literature, and prior observation with the optical micrography
shown in Fig. 22 [26,44,68].

Moreover, the base regions of Impellers I, II, and III show promi-
nent chevron-like solidification structures [69]. Additionally, pro-
cessing the fin region of Impeller III at high laser power of 265 W
induced crystal growth along with the z (build) direction and a
higher crystallographic misorientation angle > 15�. Furthermore,
the fin region of Impeller III shows more h101i columnar grains
than its base region. The base region was found to be composed
of h111i columnar grains with stronger epitaxy in h001i . Several
randomly oriented smaller grains may have also occurred by the
nucleation of new grains in the fin region. Also evident in the fin
region of Impeller III are circular-shaped flaws of approximately
30 mm in diameter.

In contrast, the fin region of Impeller IV showed dominant
columnar grain growth along the h111i direction compared with

Fig. 23. SEM images and inverse pole figure (IPF) EBSD images with respect to z (build direction) showing the effect of laser power on the grain size and orientation for all
impellers-fin (A) and base (B) regions. The yellow circles demarcate lack-of-fusion flaws.

Table 5
Grain size analysis for fin and base regions of all impellers. Over 200 grains were measured for obtaining the mean and standard deviation.

Impeller I
Nominal

Impeller II
Nominal-Lo

Impeller III
Nominal-Hi

Impeller IV
Lo-Lo

Base (B) Average Grain Size (mm) 16.0 16.6 21.2 16.3
Standard Deviation (mm) 12.11 8.28 11.30 10.62

Fin (A) Average Grain Size (mm) 20.6 14.0 21.5 17.8
Standard Deviation (mm) 13.74 7.79 11.53 10.20

R. Yavari, A. Riensche, E. Tekerek et al. Materials & Design 211 (2021) 110167

20



the base region which has grains in the h101i with the additional
presence of h001i grains. As described in recent findings by Oli-
veira et al. [70], this effect could be the result of preferential
growth direction during solidification .

In summary, from the grain size measurements shown in
Table 5, it can be deduced that the grain size is larger under high
power conditions while it typically reduces as the power decreases.
Furthermore, the larger average and standard deviation in grain
size observed in the fin region in comparison to the base region
for Impeller I, III and IV suggests that not only the change in power
but also the change in time between layers and the effective cross-
section area affect such microstructural features.

3.2. Process signatures

3.2.1. Case I - effect of change in process parameters (process drifts)
The TEP measurements sampled at locations without planted

flaws for the four impellers are shown in Fig. 24 as a function of

the layer height. As evident from Fig. 24(a) and (b) all impellers
exhibited similar TEP responses, with an increase in the fin region,
indicating the consequential effect of part shape (geometry) in
influencing its thermal history.

In Fig. 24 (b), the TEP measurements for Impeller IV are smaller
in comparison to Impeller II and III as it was produced entirely at
the low-level laser power of 125 W. However, in Fig. 24(b) the
TEP measurements are not significantly different between Impeller
II and Impeller III despite the change in laser power in the fin-
region. As noted previously in Sec. 2.1.2, in the fin region of Impel-
ler II the laser power was decreased from 195 W to 125 W; the
laser power in the fin region for Impeller III was increased from
195 W to 265 W. Further, the TEP signature for Impeller II, did
not reduce in the fin region to the same level as Impeller IV even
though the laser power was reduced to 125 W.

The TED measurements sampled at locations without planted
flaws are shown in Fig. 25. Unlike TEP measurements, the TED
measurements varied prominently between the sections of the

Fig. 24. (a) TEP signatures for Impeller I (nominal). (b) TEP data for Impeller II, III and IV. Except Impeller IV, which is consistently produced at low power of 125 W for all
sections, there is no significant difference in the TEP measurements. We also note that the TEP measurements increase with the build height and reach a peak value for all
sensors in the region of the fin due to its reduced cross section.

Fig. 25. (a) TED photodetector response for each Impeller I produced under nominal conditions. (b) TED measurements for Impellers II, III, and IV capture the deviations from
the nominal laser.
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impeller produced under differing laser power conditions. This is
because the TED measurements were obtained from broadband
build chamber emissions symptomatic of variation in the global
energy density (Ev). However, the TED measurements do not cap-
ture variation in the thermal history resulting from the part geom-
etry, and as will be evident shortly in Sec. 3.2.3, nor is TED sensitive
to f-h lens delamination flaws (Case III). In other words, the TEP
and TED data are complementary, TEP is more sensitive to the vari-
ations in the thermal history on account of the change in part

shape and lens transmission flaws whereas, TED captures variation
in the thermal history resulting from change in the global energy
density.

3.2.2. Case II – Effect of planted flaws
Fig. 26 (a) and (b), respectively, show the TEP and TED signa-

tures averaged over a layer at locations where flaws (voids) were
deliberately planted. In both measurements large deviations
(spikes) were observed at locations with embedded flaws due to

Fig. 26. Effect of planted flaws on (a) TEP and (b) TED measurements relative to trends for a flaw-free region (grey line). The spikes in the TEP and TED correspond to the
presence of flaws. Flaws as large as 0.050 mm (50 lm) are discerned from the signal characteristics.

Fig. 27. Representative layer-wise TEP measurements for six layers of Impeller III. In the demarcated locations, these TEP measurements show the presence of regions
affected by lens delamination. Note the areas of persistent low intensity in the northwest quadrant.
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partially fused and unmelted powder trapped inside the voids. Six
such spikes are evident in Fig. 26, corresponding to the six largest
diameter flaws – U 0.5 mm, U 0.4 mm, U 0.3 mm, U 0.2 mm, U
0.1 mm, and U 0.05 mm. The smallest planted flaws of U
0.03 mm were not readily discerned in the sensor measurements.
The sensor measurements are therefore sensitive to flaw sizes lar-
ger than U 0.05 mm.

3.2.3. Case III – Effect of lens delamination
The representative TEP measurements for the region of Impeller

III afflicted with lens delamination are shown in Fig. 27. The TEP
and TED trends over a 3 pixel � 3 pixel region are plotted in
Fig. 28 (a) and (b) respectively. The effect of lens delamination is
evident in the relative low intensity of the TEP signature in

Fig. 28 (a). These regions of lens delamination appear consistently
over multiple layers of the base and mid-section until only a small
area persists in the fin region.

The effect of delamination is evident when comparing the TEP
signatures of Impeller III for a region with lens delamination and
a region without lens delamination region. Such a comparison of
TEP signatures is depicted in Fig. 28 (a). This difference in intensity
of the TEP signature persists until the fin region. The increase in
laser power from 195 W in the base and mid-section to 265 W in
the fin region during the processing of the fin region of Impeller
III, coupled with its smaller surface area negates the deleterious
impact of lens delamination.

In contrast to the TEP signatures, the TED signature in Fig. 28 (b)
did not register any discernable difference when sampled between

Fig. 28. Comparing (a) TEP and (b) TED measurements sampled at flaw-free regions (solid line) and at regions with lens delamination (dotted line). (a) There is a significant
difference in the TEP trends prior to the melting of the fin region corresponding to the location of lens delamination. (b) The TED signatures for flaw-free and delamination-
afflicted regions are visually undistinguishable.

Fig. 29. (a) The thermal history for the four impellers on account of sampling the instantaneous surface temperature following 0.1 s after the laser strike. The thermal trends
diverge significantly corresponding to the change in the laser power in the fin region. (b) When the thermal simulation is sampled at the end-of-cycle, the difference between
the four impellers is not evident.
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the regions with and without lens delamination. This limitation is
explained by Mani et al. [9]. For capturing optical transmission
effects using co-axial monitoring systems, Mani et al. note that it
is necessary to measure the process radiation in a narrow fre-
quency region close to the bandwidth of the f-h lens to eliminate
noise from the chamber radiation. The TEP signature is a filtered
measurement, whereas TED provides an unfiltered broadband
measurement. Hence it is to be expected that the TED measure-
ment did not register the onset of lens delamination.

Fig. 24 through Fig. 28 thus reveal the effectiveness and comple-
mentary nature of the TEP and TED measurements in capturing

potential flaws resulting from both process drifts and planted
flaws. However, the following limitations and challenges impede
the direct use of the TEP and TED sensor measurements for flaw
monitoring.

� The TEP and TED data were acquired at a sampling rate of 200
kHZ and 100 kHZ, respectively, and continuously throughout
the 16.5-hour build (845 layers). Data amounting to 3 gigabytes
of two types of process signatures (TEP and TED) were obtained
in this work. Therefore, to detect flaw formation the sensor sig-
natures the data must be transferred for further analysis. The
inherent latency in the transfer and analysis of the large volume
of sensor signatures prevents prompt detection of flaws.

� The process signatures contain information from both common
cause variations resulting from the part shape, as well as special
cause variations from change in laser power (Case I, Fig. 24 and
Fig. 25), embedded voids (Case II, Fig. 26), and lens delamina-
tion (Case III, Fig. 27). For example, in Fig. 24 the TEP signatures
increase during the processing of the fin region even when the
processing conditions are held constant (Impeller I and IV). In
the absence of a physics-based model to delineate the thermal
trends, it is challenging to separate such naturally occurring
variations (common cause variation resulting from the part
shape, location, orientation, scanning pattern) from variations
in the sensor signatures caused by incipient flaws (special cause
variation, such as machine faults, cyber intrusion, change in
process parameters, recoater crash).

3.3. Application and results of the digital twin approach

3.3.1. Case I – Detecting change in process parameters (process drifts)
As described in Eqn. (17), the meltpool information in the form

of TEP and TED signatures was incorporated into the graph theory
thermal model. Fig. 29(a) shows the instantaneous surface temper-
ature predictions for the four impellers as a function of layer height.
The instantaneous surface temperature (Tnom) being the local
response following 0.1 sec after the laser strikes the sampled area
as described in the context of Fig. 14 and Fig. 15 from Sec. 2.3.2.

Fig. 30. The temperature deviations from the nominal Impeller I are used to detect
process drifts. As the laser power in the processing of the fin region changes for
Impeller II and III, the layer temperature deviates significantly from that of the
nominal flaw-free Impeller I. Likewise, the temperature trends for Impeller IV,
which is produced at low power (125 W) is significantly different than the nominal
impeller I.

Fig. 31. The temperature response for Impeller II and III sampled at sections where flaws were planted. (a) There is not only a distinct difference in the thermal history of
Impeller I and Impeller II, but also in the thermal history of sections with and without implanted flaws. There is a noticeable increase in the temperature in the region where
flaws are embedded.
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Fig. 29(b) shows the surface temperature predictions at the
end-of-cycle. Comparing Fig. 29(a) and (b) underscores the impor-
tance of considering the instantaneous surface temperature as
opposed to the end-of-cycle temperature. The end-of-cycle tem-
perature trends shown in Fig. 29(b) fail to capture and identify pro-
cess drifts resulting from changes in the laser power.

The instantaneous surface temperature Fig. 29(a) diverges sig-
nificantly for Impellers II, III, and IV, corresponding to the layers
where the laser power is changed. A comparison of Fig. 29(a) and
Fig. 24 highlights the utility of the digital twin approach – process
anomalies that are difficult to discern from the TEP sensor data
alone are revealed prominently when the sensor signatures are
combined with a physical model. Moreover, the data need not be
subjected to further analysis.

The deviation in thermal trends of Impeller II, III, and IV com-
pared to the thermal trends of the nominal Impeller I are charted

in Fig. 30, i.e., Tnew - Tnom. The deviation in thermal history for
Impellers II and III is significant in the fin region where the laser
power was changed from 195 W to 125 W and 265 W ,
respectively.

3.3.2. Case II – Detecting planted flaws (cyber intrusions)
Next, in Fig. 31(a) and (b), the digital twin approach is used for

detecting the implanted flaws (voids) in Impeller II and Impeller III,
respectively. Referring to Fig. 31(a), a significant difference in the
thermal trends between Impeller I and Impeller II is noted. Further,
within the thermal trends for Impeller II, there is a large difference
in the region where flaws are embedded, in contrast to thermal
trends from flaw-free regions of Impeller II.

The deviation from the thermal trends of the flaw-free region is
the largest at the location corresponding to biggest embedded flaw
of U 0.5 mm. A similar difference between is noted in the thermal
trends of Impeller III in Fig. 31(b) for regions with and without
embedded flaws. These large deviations in the thermal trends
makes it is possible to readily identify when malicious intrusions
have occurred, as well as pinpoint which regions have been tar-
geted. Shown, in Fig. 32 are deviations (Tnew – Tnom) in the thermal
history for Impellers III and IV relative to Impeller I sampled in the
region with planted (embedded) flaws. The temperature deviations
are significant in the region with embedded flaws, as well as in the
region where the fins are built with changed processing parts.

From Fig. 31 and Fig. 32, a temperature deviation exceeding
40 �C to 50 �C from the nominal thermal history were correlated
to flaw formation. However, referring to Fig. 32, there is limitation
in the smallest size of the flaw that can be detected in the current
embodiment of the digital twin approach. Imposing a deviation
threshold of 40 �C, flaws larger than a diameter of 100 mm were
readily detected. This flaw detection limit is influenced by the layer
resolution of the graph theory model, viz., 250 mm (Fig. 18(b)).
Improving the model resolution, would therefore improve the
detection ability, albeit at the cost of computation time.

3.3.3. Case III – Detecting lens delamination (machine faults)
The implementation of the digital twin for detecting lens

delamination is shown in Fig. 33. Plotted in Fig. 33(a) are the ther-
mal history trends for Impeller III with the TEP data sampled in the

Fig. 32. A large deviation from the nominal temperature trends is observed in the
region where there are embedded flaws.

Fig. 33. (a) The thermal history trends for Impeller III sampled from the lens delamination region, compared to thermal history trends for the flaw-free region. Shown also is
the trend for the nominal, flaw-free Impeller I. (b) There is a large deviation from the nominal trends (Impeller I) where lens delamination is observed in Impeller III. The
deviation in the thermal trends is also when regions affected by delamination are compared to delamination-free regions for Impeller III.
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region with delamination. Also overlaid are thermal trends for
Impeller III sampled for the flaw-free region, as well as the thermal
history for the nominal, flaw-free Impeller I.

The deviation in thermal history of Impeller III from Impeller I
are reported in Fig. 33(b). The temperature trend of Impeller III
in the regions of delamination not only deviate significantly from
those of Impeller I, but also from the thermal trends for
delamination-free regions of Impeller III These results affirm that
the digital twin approach captures the difference in temperature
trends that are symptomatic of flaw formation between different
impellers, but also within the same impeller on account of machine
faults.

4. Conclusions

This work demonstrates a digital twin strategy for in-situ flaw
detection in laser powder bed fusion (LPBF) process. The digital
twin herein refers to the combining of in-process meltpool temper-
ature measured using an in-situ sensor array with fast part-level
thermal models predicted using graph theory. Results demonstrate
that the digital twin approach facilitates precise and interpretable
detection of flaw formation as opposed to the use of sensor data
alone. A key outcome is that the digital twin approach overcomes
the need for transferring sensor signatures to a separate data anal-
ysis algorithm, thus precluding the inherent latency in data-driven
flaw detection.

Specific outcomes and conclusions are as follows:

(1) To test the digital twin approach, four stainless steel (316L)
impeller-shaped parts were built simultaneously on a EOS
M290 LPBF system. These impellers measured U60
mm � 16.9 mm in height, consisted of 845 layers and
required approximately 16.5 h to complete. During the
build, the process was monitored continuously using an
array of three coaxial photodetectors integrated into the
laser path. Signals obtained from the sensor array were pro-
cessed to create two types of measurements, namely TEP
and TED. The TEP signature is correlated to the meltpool
temperature, while TED captures the broadband chamber
radiation.

(2) The first of these four impellers, Impeller I, was produced
under optimal processing parameters – nominally flaw-
free processing conditions (laser power of 195 W). Two
other impellers (Impeller II and III) were processed under
differing laser power settings that were changed during
the build to mimic process faults. For Impeller II, the laser
power was changed from 195 W to 125 W; for Impeller III
the laser power was changed from 195W to 265 W. A fourth
impeller, Impeller IV, was processed entirely under the
reduced laser power of 125 W throughout. Further, voids
were embedded into Impellers II, III, and IV to imitate flaw
formation caused due to malicious intrusions in the process.
A third type of flaw, resulting from a type of machine anom-
aly called lens delamination was introduced in Impeller III,
which led to reduced energy in the melting of specific
regions.

(3) The impellers were characterized with non-destructive X-
ray computed tomography (XCT), optical micrography, scan-
ning electron microscopy, and electron backscatter diffrac-
tion. The XCT analysis revealed that the flaw volume ratio
in the sample produced under nominal processing condi-
tions (Impeller I) was under 0.01 percent, while for the rest
of the impellers the flaw volume ratio was in the range of
0.08 percent to 0.11 percent. The optical and scanning elec-
tron microscopy revealed the presence of lack-of-fusion flaw

formation in the functionally critical fin region of Impellers
II, III, and IV. Differences in the microstructure (grain size
and texture), and orientation were also evident for the four
impellers using electron backscatter diffraction. Hence, a
change in the processing conditions is liable to impact the
functional integrity of a LPBF produced part.

(4) The thermal model used in this work was based on the novel
concept of heat diffusion on graphs – graph theory, which
was demonstrated to be several-fold faster than FE analysis
[22,44,46–48]. The graph theory approach is used to predict
the temperature distribution at the part level (thermal his-
tory). The graph theory simulation converged within 7 min
compared to the 16.5 h build time.

(5) The TEP and TED sensor signatures from the sensor data
were incorporated into the graph theory model. In this man-
ner, the part-level or macro-scale thermal history of the part
predicted from graph theory is updated with micro-scale
meltpool-level phenomena measured using in-process sen-
sors. The proposed digital twin approach captured all three
types of flaw formation aspects in an unambiguous manner.
In its current embodiment, the approach is shown capable of
detecting planted flaws of diameter 100 mm and above. This
limitation is readily remedied by increasing the resolution of
the thermal simulation.

In our future work, we will endeavor to extend the digital twin
for detecting various other types of flaws, such as distortion and
recoater crash, as well as test the approach with different process-
ing parameters, scanning strategies and part shapes.
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